Additional Information

Site Information

 Loading... Please wait...


SAE J1939 Diagnostic Device Includes a PGN, SPN Database

Posted by Industry News on

PEAK PCAN-Diag FD J1939 Add-in

The handheld PCAN-Diag FD device from PEAK-System supports diagnosing communication on a CAN (FD) network. In addition, a separately available extends the functionality to analyze SAE J1939 data traffic.

The SAE J1939 Standard describes communication in utility vehicles via CAN Bus. The standard specifies messages and data for transmitting diagnostic and control information using PGNs (Parameter Group Numbers) and SPNs (Suspect Parameter Numbers). Decoding multi-packet messages with payload data up to 1785 bytes and definition of up to 20 custom PGNs are possible.

The CAN Bus data traffic is analyzed utilizing the SAE J1939 database and presented in a way understandable for the user. In addition, the add-in includes functions such as decoding multi-packet messages, address claiming, and handling diagnostic information. The SAE J1939 add-in requires a device-bound license file, and it authorizes updates of the SAE J1939 database for two years.


  • Supports the SAE J1939 standard
  • Representation of SAE J1939 data interpreted according to PGN and SPN definitions
  • SAE J1939 database with all definitions and the included parameters
  • Definition of up to 20 custom PGNs
  • Decoding of multi-packet messages with payload data up to 1785 bytes
  • Support for address claiming
  • Display of DM and DTC diagnostic data

More Information...

SAE J1939 Starter Kit And Network Simulator

SAE J1939 Starter Kit And Network Simulator

The SAE J1939 starter kit allows you to monitor, simulate, and record any PGN as defined in the SAE J1939-71 Standard but also including diagnostic messages according to SAE J1939-73.

The starter kit was not designed to simulate specific diesel engines, but if you enter all PGNs that are being used, you can design and simulate any diesel engine.

More Information...

SAE J1939: Simulation of Analog and Digital Signals with the JCOM1939 Monitor Software

The JCOM1939 Monitor Software is ideal for monitoring, recording, analyzing, and simulating SAE J1939 data traffic. The system works in combination with our SAE J1939 gateways. This comprehensive and easy-to-use, easy-to-understand Windows software displays not only SAE J1939 data traffic but also scans the network, simulates an ECU (incl. full node address negotiation features), and responds [...]

Read More »

Data Acquisition from Heavy Duty Vehicles Using SAE J1939 CAN Bus

Modern vehicles have electronic control units (ECUs) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs (or ‘controllers’) are networked to convey information and output measured and calculated data to each other.This in-vehicle network is a data goldmine for improved maintenance, measuring vehicle performance and its subsystems, fleet [...]

Read More »

A New Generation of SAE J1939 Gateway, ECU Simulator, and Starter Kit

Like many other businesses, we have to deal with the global shortage of electronic components. For instance, the NXP LPC 17xx processors we used for our SAE J1939 gateways and the starter kit are not available at this time. Even worse, there is no reliable information if/when production resumes. This situation forced us to rethink [...]

Read More »

SAE J1939 Data Acquisition System For Diesel Engines Measures And Records 23 Suspect Parameter Numbers (SPNs)

The Titan S8-CAN by Madgetech (USA) represents a data acquisition system for diesel engines that simultaneously measures and records 23 suspect parameter numbers (SPNs). The portable data logger is suitable for engine, road, and diagnostic testing applications. It connects to an SAE J1939 network via the diagnostic port and supports the monitoring and recording of SAE J1939 messages between [...]

Read More »

Design Of Proprietary Parameter Group Numbers (PGNs)

For a brief introduction to PGNs, see our post SAE J1939 Message Format and Interpretations of PGNs.As the name Proprietary Parameter Group Numbers implies, the SAE J1939 standard supports Parameter Groups in PDU1 and PDU2 Format that manufacturers can assign for their specific needs, which includes the design of the data field in the message. [...]

Read More »

Guide to SAE J1939 - Parameter Group Number Compilation

The following is an excerpt from  A Comprehensible Guide To J1939 by Wilfried Voss. For internal purposes, the parameter group number is extended to 24 bits = 3 bytes, where the most significant 6 bits are always set to zero. Each ECU must accomplish this process individually; this procedure is not part of the CAN standard. To compile [...]

Read More »

A Beginner's Guide to SAE J1939 Embedded Software Development

Introduction Welcome to my beginner's guide! By opening this page, you have entered the first and probably most crucial stage toward developing your SAE J1939 project: Reading. Over the years, I dealt with many newcomers to the J1939 technology, some of them motivated by great product ideas. Others were thrown into a project because they were [...]

Read More »

SAE J1939 Starter Kit With Diesel Engine Simulation Plus VIN Request Demo

Our JCOM.J1939 Starter Kit And Network Simulator is designed to allow the experienced engineer as well as the beginner to experiment with SAE J1939 data communication without the need of connecting to a real-world SAE J1939 network, i.e. a diesel engine. It may sound obvious, but in order to establish a network, you need at least two [...]

Read More »

SAE J1939 Message Format And Interpretation Of PGNs

It happens on a regular basis that I am contacted by a user of our SAE J1939 ECU Simulator Board With USB Port, complaining that our device does not display a PGN correctly or modifies the PGN before transmitting. The real problem here is a misinterpretation of the PGN and its purpose. For instance, a PGN [...]

Read More »