Site Information

 Loading... Please wait...

Blog

CAN Bus Bridge (CAN-to-CAN) Application With Arduino Due

Basically, there are two scenarios where a CAN Bridge application is of use:1. Connecting two separate CAN Bus networks.2. Network length extension.While the first scenario is more or less self-explanatory, let's look a little closer into the network length extension: The physical CAN network length depends primarily on the CAN baud rate, i.e. the higher [...]

Read More »


SAE J1939 Turbo Interface Board for Raspberry Pi

A note upfront: The CAN interface board for the Raspberry Pi as described in the following, specifically the firmware code, is under current development. The hardware is ready for production, and the release is targeted for end of February 2017.This post is a follow-up on a previous post Raspberry Pi With CAN Bus Or SAE J1939 [...]

Read More »


Raspberry Pi With CAN Bus Or SAE J1939 Turbo Interface Board

A note upfront: The CAN interface board for the Raspberry Pi as described in the following, specifically the firmware code, is under current development. The hardware is currently in production, and the release is targeted for the end of February 2017. If you have a special interest in running the SAE J1939 protocol on the Raspberry [...]

Read More »


CAN Bus Interface For the Raspberry Pi 2/3 Comes With Various Options

The PiCAN2 board series by Copperhill Technologies provides CAN Bus capabilities for the Raspberry Pi 2 or 3. The boards (with the exception of the dual isolated interface) use the Microchip MCP2515 CAN controller in combination with the MCP2551 CAN transceiver. There is an easy to install SocketCAN driver, and programming can be accomplished in C [...]

Read More »


CAN Bus Data Traffic Simulation With Arduino Due

When working on a CAN bus or SAE J1939 project, it can be extremely helpful when the expected CAN Bus data traffic can be simulated rather than connecting your system to a running vehicle or automation control. The following project does exactly that with little effort for designing CAN data frames and their frequency. As [...]

Read More »


SAE J1939 to USB Gateway Allows Easy Communication And Analysis Of Truck, Bus Network

The SAE J1939 ECU Simulator Board With USB Port by Copperhill Technologies provides a powerful, yet easy-to-manage connection to a J1939 network, allowing the reception, monitoring & analysis, and transmission of PGNs (Parameter Group Numbers) as defined by the SAE J1939-71 Standard. The gateway supports the full SAE J1939 Standard, including Network Management (Address Claim, SAE J1939/81) and [...]

Read More »


How To Use The Native USB Of The Arduino Due For High-Speed Communication

It seems to be an obvious statement, but there are many applications for the Arduino Due that require high-speed communication in a range that goes beyond regular UART baud rates, i.e. several Mbits/sec. Naturally, USB comes to mind, but surprisingly there are some obstacles when it comes to accessing the Arduino Due's USB ports. The [...]

Read More »


Bosch Automotive Electrics and Automotive Electronics: Systems and Components, Networking and Hybrid Drive

This book represents a complete reference guide to automotive electrics and electronics. This new edition is the definitive reference for all automotive engineers, and it has been compiled by one of the world's largest automotive equipment suppliers, the Robert Bosch GmbH. The book also includes new and updated material.As in previous editions, the various topics [...]

Read More »


SAE J1939 Project With Arduino Uno/Mega2560: Requesting & Simulating Vehicle Identification Number (VIN)

This post describes an Arduino project (sketch) that requests the Vehicle Identification Number (VIN) from an SAE J1939 vehicle network. Before I go into the technical details, let me describe the hardware configuration. First, as shown in the picture, I used an Arduino Uno with a  CAN Bus Shield. In order to simulate the SAE J1939 vehicle bus, [...]

Read More »


Dual CAN Bus Interface For Arduino Due: Controlling the LEDs

The following explains how to control the LEDs on our  jCOM.CAN.DUE and jCOM.CAN.DUE-X boards. The experienced Arduino programmer may frown since all necessary information is available (LED1 = GPIO 14; LED2 = GPIO 15). Consequently, this post is for the novice Arduino programmer or those who are primarily interested in embedded Controller Area Network programming. Just as a reminder, [...]

Read More »