Site Information

 Loading... Please wait...

Blog

CAN Bus Unplugged: A Deep Dive into Its Origins, Growth, and Future

Posted by Wilfried Voss on

Controller Area Network - CAN - ApplicationsThe following is an excerpt from https://jcom1939.com/history-and-development-of-the-controller-area-network-can-bus/

Introduction

The Controller Area Network (CAN) bus is a robust serial communication protocol developed to facilitate real-time data exchange between electronic control units (ECUs) in various applications, notably in the automotive industry. Originating in the 1980s, CAN bus has become integral to numerous systems requiring reliable and efficient communication among multiple microcontrollers.

Origins and Early Development (1980s)

In the early 1980s, engineers at Robert Bosch GmbH identified the need for a reliable in-vehicle communication system to manage the increasing complexity of automotive electronics. Existing serial buses were inadequate for real-time control and reliability requirements. By 1983, Bosch commenced the development of the CAN protocol, aiming to enable seamless communication between ECUs without a central host computer. The protocol was officially introduced in 1986 at the Society of Automotive Engineers (SAE) congress in Detroit. A significant milestone was achieved in 1987 when Intel and Philips released the first CAN controller chips, the 82526 and 82C200, respectively, facilitating the integration of CAN into automotive systems.

Standardization and Automotive Adoption (1990s)

The 1990s marked the standardization and widespread adoption of CAN bus in the automotive sector. Bosch released the CAN 2.0 specification in 1991, delineating standard (11-bit identifier) and extended (29-bit identifier) frame formats. In 1993, the International Organization for Standardization (ISO) published the CAN standard as ISO 11898, covering the data link layer and high-speed physical layer specifications. Automobile manufacturers rapidly embraced CAN bus for its efficiency in reducing wiring complexity and enhancing vehicle functionality. A notable implementation was in the 1991 Mercedes-Benz W140, the first production vehicle to feature a CAN-based multiplex wiring system. 

Expansion into Diverse Industries (2000s)

Beyond automotive applications, the 2000s witnessed CAN bus's expansion into various industries. Its reliability and real-time communication capabilities made it suitable for industrial automation, medical equipment, maritime, and aerospace applications. Standardized higher-layer protocols such as CANopen and DeviceNet facilitated this diversification by providing frameworks tailored to specific industry requirements. 

Technological Advancements: CAN FD and CAN XL (2010s–2020s)

To meet the growing demands for higher data rates and payload capacities, Bosch introduced CAN with Flexible Data-Rate (CAN FD) in 2012. CAN FD allows for data rates exceeding 1 Mbit/s and increases the maximum data payload from 8 to 64 bytes, enhancing bandwidth and efficiency. Further advancements led to the development of CAN XL, supporting payloads up to 2,048 bytes and data rates up to 20 Mbit/s, bridging the gap between traditional CAN systems and Ethernet-based networks. 

Current Applications and Future Outlook

Today, CAN bus remains a cornerstone in automotive electronics, underpinning systems such as engine management, transmission control, and advanced driver-assistance systems (ADAS). Its application extends to industrial automation, medical devices, and other sectors requiring dependable communication networks. The ongoing evolution of CAN technologies, including CAN FD and CAN XL, ensures its relevance in addressing contemporary communication challenges, solidifying its position as a versatile and enduring protocol in the realm of serial communication.


Networking Vehicles to Everything: Evolving Automotive SolutionsNetworking Vehicles to Everything: Evolving Automotive Solutions

Communication between vehicles and infrastructure is poised to revolutionize how we manage traffic, accommodate pedestrians, and interact with the environment—reshaping the future of transportation. Networking Vehicles to Everything serves as a cutting-edge resource for professionals and researchers deeply invested in vehicular automation. It offers a comprehensive exploration of the diverse, and often competing, technologies that will ultimately converge to make this vision a reality.

This detailed volume addresses the key challenges, practical case studies, current standardization efforts, and product implementation strategies. It also looks ahead to emerging trends such as software-defined networking, millimeter wave (mmWave) communication, and advanced control theory.

Readers will gain a thorough understanding of the major institutions and regulatory bodies driving the evolution of this field. The book also explores the ongoing technological rivalry between IEEE 802.11p and 3GPP LTE-V2X—two frontrunners vying for dominance in a multi-billion-dollar market. In addition, it highlights unresolved technical questions, evolving market opportunities, and the vast potential that connected vehicle technologies hold for all forms of transportation. More information...

Exploring the ESP32 Processor and Its CAN Interface Programming

The ESP32 processor, developed by Espressif Systems, has rapidly emerged as a favorite among developers and hobbyists alike due to its robust performance, integrated wireless connectivity, and versatility in handling various tasks. Among its many features is a built-in CAN (Controller Area Network) interface—technically implemented as a TWAI (Two-Wire Automotive Interface) controller—that has opened up [...]

Read More »


Optimized Design: Enhancing CAN Transceiver Isolation for Reliable Fieldbus Networks

The Controller Area Network (CAN) bus has become a staple in industrial automation, process control, medical systems, and manufacturing due to its high noise immunity and error-handling capabilities. As CAN networks often span long distances and connect multiple systems, isolating the bus from individual systems is critical. Isolation prevents electrical transients, eliminates ground loops, and [...]

Read More »


Farmers Are Hacking Their Tractors Because of a Right to Repair Ban

For decades, American farmers have been at the mercy of agricultural equipment manufacturers, who have locked down their tractors with proprietary software, restricting repair options and forcing owners to seek expensive, manufacturer-approved service providers. In response, a growing number of farmers are resorting to hacking their own tractors, using underground software tools and firmware modifications [...]

Read More »


Exploring Copperhill Technologies' NMEA 2000 PICAN-M HATs for Raspberry Pi

Copperhill Technologies has established itself as a prominent supplier of embedded systems and hardware solutions for applications in industrial, automotive, and maritime domains. Among its innovative offerings is the NMEA 2000 PICAN-M HAT, a Hardware Attached on Top (HAT) module designed specifically for the Raspberry Pi platform. This HAT is tailored to support NMEA 2000 [...]

Read More »


SAE J1939 Technology for Agricultural Applications

The rapid advancement of technology in the agricultural sector has led to the integration of sophisticated systems to enhance efficiency, productivity, and sustainability. One such innovation is the use of the SAE J1939 protocol, a communication standard widely utilized in the field of commercial vehicles and machinery. In agricultural applications, this protocol plays a pivotal [...]

Read More »


Embedded Systems Development for NMEA 2000

Embedded systems development for the NMEA 2000 (National Marine Electronics Association) protocol presents unique challenges and opportunities in the field of marine electronics. NMEA 2000 is a standardized communication protocol designed to enable robust and reliable data exchange among marine instruments and devices. This essay explores the fundamental aspects of developing embedded systems for NMEA [...]

Read More »


CAN FD: Enhancing Automotive Communication

The Controller Area Network Flexible Data-Rate (CAN FD) protocol is a significant evolution in the field of automotive communication systems, addressing the increasing demands for speed, efficiency, and reliability in data transmission. Developed as an enhancement to the original CAN protocol, CAN FD offers a higher data rate and larger data payload, making it an [...]

Read More »


Embedded CAN Bus Development with the ESP32 Processor

The Controller Area Network (CAN) bus is a robust communication protocol designed to facilitate data exchange between microcontrollers and devices in automotive and industrial applications. With its high reliability and real-time capabilities, it has become a cornerstone in modern embedded systems. The ESP32, a popular microcontroller from Espressif Systems, offers integrated CAN controller support, making [...]

Read More »


PiCAN CAN Bus HATs - Powerful and Versatile Add-Ons for the Raspberry Pi

The PiCAN series of boards are widely recognized as powerful and versatile add-ons for the Raspberry Pi, enabling seamless integration with the Controller Area Network (CAN) bus. Originally developed for automotive applications, the CAN bus has become a standard communication protocol in industries such as industrial automation, robotics, and healthcare due to its robustness and efficiency. [...]

Read More »