Site Information

 Loading... Please wait...

Blog

Arduino Due: Dual CAN Port Test Sketch With LED CAN Traffic Indicators

In a previous post ( Arduino Due: Dual CAN Port Test Sketch), I demonstrated how to read and write the two CAN ports on the Arduino Due. The post explains that the two CAN ports on the Arduino Due are practically useless without their respective CAN transceivers. CAN transceivers convert a regular TTL signal from the CAN controller [...]

Read More »


App Note: Testing Arduino Due With 2 CAN Bus Breakout Boards

The availability of Controller Area Network (CAN) interfaces in combination with other interface technologies explains the vast popularity of the ARM Cortex-M3 processor in the CAN and SAE J1939 industry. The processor provides the means to easily and quickly create applications like CAN/J1939 gateways, CAN Bridges, J1939 ECUs, J1939 Data Logger, and many more. The Arduino [...]

Read More »


mbed LPC1768 Baseboards With CAN Bus (Controller Area Network) Port

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.I will take a risk by repeating myself over and over again by saying that the mbed LPC1768, as well as the Arduino Due, is utterly useless in its bare form. In order to accomplish any [...]

Read More »


Arduino Due CAN Bus (Controller Area Network) Interfaces

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.As it turns out, the Arduino Due, just like a myriad of other embedded systems with CAN interfaces, was developed under the best intentions, but these intentions were focussed on providing a low-price ARM processor solution [...]

Read More »


Arduino Due - Microcontroller Board Based on the Atmel SAM3X8E ARM Cortex-M3 CPU

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor. According to the official Arduino website: The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU. It is the first Arduino board based on a 32-bit ARM core microcontroller. It has 54 digital input/output pins [...]

Read More »


Recommended Literature Describing The ARM Cortex M3 Microcontroller

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.  The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings. The cores are intended for microcontroller use, and consist of the Cortex-M0, M0+, M1, M3, M4, and M7. The  ARM Cortex-M3 processor is very [...]

Read More »