Blog
Recent Posts
The Teensy Series of Processor Modules: A Versatile Platform for Embedded Systems
Posted by
onThe Teensy series of processor modules is a family of compact, high-performance microcontroller boards developed by PJRC. These boards are widely recognized for their small form factor, powerful processing capabilities, and extensive I/O support, making them an ideal choice for a variety of embedded systems applications, including robotics, audio processing, and IoT (Internet of Things) projects.
History and Development
The Teensy series was introduced in 2008 by Paul Stoffregen, the founder of PJRC. The goal was to provide a small yet powerful microcontroller board that could offer more capabilities than the traditional Arduino boards. Over the years, Teensy has evolved through multiple versions, incorporating more powerful microcontrollers and expanding its feature set to cater to advanced applications.
Hardware Specifications and Variants
The Teensy family consists of multiple versions, each designed with different levels of processing power and memory to meet various application needs. Some of the most popular models include:
-
Teensy 2.0 – Based on the ATmega32U4 microcontroller, this board operates at 16 MHz and features 32 KB of flash memory. It was one of the early iterations offering built-in USB capabilities.
-
Teensy 3.2 – This version introduced a significant leap in performance, featuring the ARM Cortex-M4 processor running at 72 MHz, 64 KB RAM, and 256 KB flash memory.
-
Teensy 3.6 – Equipped with a Cortex-M4F processor running at 180 MHz, this board includes more RAM (256 KB) and flash memory (1 MB), as well as built-in support for microSD cards.
-
Teensy 4.0 – The fastest and most powerful Teensy board, featuring an ARM Cortex-M7 processor that can run at speeds up to 600 MHz. It provides 1 MB RAM and 2 MB flash memory, making it suitable for high-performance applications.
-
Teensy 4.1 – An enhanced version of the Teensy 4.0, with additional memory and expandability options, including Ethernet support and larger flash storage capabilities.
Key Features and Advantages
1. High Processing Power
One of the defining characteristics of the Teensy series is its high-speed processors, particularly in the newer models such as the Teensy 4.0 and 4.1. The ARM Cortex-M7 processor provides exceptional computational performance, allowing for advanced signal processing and machine learning applications.
2. USB and HID Support
Teensy boards natively support USB communication, allowing them to function as USB keyboards, mice, MIDI controllers, and serial devices. This feature is particularly useful for creating custom input devices, musical instruments, and gaming peripherals.
3. Compatibility with Arduino IDE
Despite its superior hardware, Teensy remains compatible with the Arduino IDE through the Teensyduino add-on. This makes it accessible to developers familiar with Arduino programming while providing more advanced capabilities.
4. Extensive I/O and Connectivity Options
Teensy boards feature a wide range of I/O options, including:
-
Multiple PWM (Pulse Width Modulation) channels
-
Analog and digital inputs
-
SPI, I2C, UART communication protocols
-
Built-in SD card support (on select models)
-
Ethernet expansion (on Teensy 4.1)
5. Real-Time Capabilities
With its high-speed processing and dedicated real-time processing features, the Teensy series is well-suited for applications requiring precise timing and responsiveness, such as motor control, audio synthesis, and real-time data acquisition.
Applications of the Teensy Series
Due to its versatile nature, the Teensy series finds applications in various fields:
-
Audio Processing: The Teensy Audio Library provides tools for high-quality audio synthesis, making the board popular among electronic musicians and sound engineers.
-
Robotics: Teensy's fast processing power and extensive I/O support make it ideal for controlling robots, drones, and automated systems.
-
IoT and Networking: With its USB, serial, and Ethernet capabilities, Teensy is a great platform for developing IoT devices and networked applications.
-
Embedded Systems Research: Many researchers use Teensy for rapid prototyping and development of embedded systems due to its flexibility and performance.
Conclusion
The Teensy series of processor modules has carved a niche in the embedded systems community by offering an impressive balance of power, compact size, and ease of use. Whether for hobbyists, engineers, or researchers, Teensy boards provide a robust platform for a wide range of applications. With continued advancements in microcontroller technology, Teensy is likely to remain at the forefront of high-performance embedded computing for years to come.
Teensy 4.1 Triple CAN Bus Board with 240x240 LCD and Ethernet
This is a Teensy 4.1 board featuring triple CAN connections—two CAN 2.0B and one CAN FD—along with an Ethernet MagJack for network connectivity. It supports external +12V DC power input with built-in reverse voltage protection. Also included is a 240x240 wide-angle IPS TFT LCD display for crisp, vibrant visuals.
Powered by an Arm Cortex-M7 microcontroller running at 600 MHz, the Teensy 4.1 is fully Arduino-compatible and works seamlessly with the Arduino IDE and libraries. In most cases, code written for other Arduino boards requires minimal modifications to run on the Teensy. More Information...
PiCAN CAN Bus HATs - Powerful and Versatile Add-Ons for the Raspberry Pi
The PiCAN series of boards are widely recognized as powerful and versatile add-ons for the Raspberry Pi, enabling seamless integration with the Controller Area Network (CAN) bus. Originally developed for automotive applications, the CAN bus has become a standard communication protocol in industries such as industrial automation, robotics, and healthcare due to its robustness and efficiency. [...]
Discover the Basics of the Raspberry Pi Along with Projects
The Raspberry Pi Starter Kit includes the Raspberry Pi 4 8GB Model B with a 1.5GHz 64-bit quad-core CPU and 8GB of RAM. The case is equipped with a super quiet 40mm PWM fan and four heat sinks to ensure good heat dissipation for the Raspberry Pi. Additionally, it comes with a 5V 3.6A Type [...]
ESP32 Processor with Internal SJA 1000 CAN Bus Controller
This post is an excerpt from our application note Controller Area Network (CAN) Development with ESP32. The ESP32 is a low-cost, low-power system-on-chip microcontroller with integrated WiFi and dual-mode Bluetooth. It employs a Tensilica Xtensa LX6 microprocessor in dual-core and single-core variations. It includes built-in antenna switches, RF balun, power amplifiers, low-noise receive amplifiers, filters, and power [...]
ESP32 Programming - Classical CAN to Bluetooth Gateway
In this post, I will present a CAN to Bluetooth gateway based on the ESP32 processor. The above image shows my test setup using our ESP32 WiFi, Bluetooth Classic, BLE, CAN Bus Module, a CAN-Bus Hub With 7 Ports And DC Power Connection, and the PCAN-USB Pro. As its description implies, the ESP32 module provides all necessary [...]
ESP32: CAN Bus Programming with MCP2515 and MCP2517FD
For good reasons, the ESP32 processor is a prevalent choice for embedded hardware development. Besides considerable memory resources, it provides various hardware features for many applications, most prominently the Internet of Things (IoT). All that comes with more than reasonable price tags, specifically when you use one of the multiple ESP32 development modules. And since [...]
Discover IoT Development with ESP32 to Create Smart Devices
The ESP32 is a low-cost, low-power SoC (System on Chip) microcontroller with integrated WiFi and dual-mode Bluetooth. It has shipped over 100 million units as of 2018 and powers many WiFi devices on the market. This book supplies end-to-end coverage of building an IoT system from the ground up to secure data communication techniques from [...]
Arduino Uno R4 Combines CAN Bus Port with IoT Capabilities
The Arduino UNO R4 WiFi combines the RA4M1 microprocessor from Renesas with the ESP32-S3 from Espressif, forming an all-in-one tool for engineers with improved processing power and a diverse array of new peripherals. With built-in Wi-Fi and Bluetooth abilities, the UNO R4 WiFi allows makers to launch into unlimited innovative opportunities. Likewise, this universal board boasts a [...]
J1939 Protocol Stack Sketch for ESP32 Using the Arduino IDE
The ESP32 is a series of low-cost, low-power system-on-chip microcontrollers with integrated Wi-Fi and dual-mode Bluetooth. The ESP32 series employs a Tensilica Xtensa LX6 microprocessor in both dual-core and single-core variations and includes built-in antenna switches, RF balun, power amplifier, low-noise receive amplifier, filters, and power management modules. Furthermore, the processor provides the means to easily [...]
Standard IoT Gateway with ARM i.MX8M Plus Quad-Core Cortex-A53 Supports Two CAN FD Ports
Aaeon, a manufacturer of reliable and high-quality computing platforms, introduced its SRG-IMX8P IoT gateway solution with two CAN FD interfaces, which brings extended connectivity and utility across vertical markets. It is powered by Arm NXP i.MX8M Plus quad-core Cortex-A53 and Cortex-M7 processors with 8 GiB of onboard DDR4 reduce object detection time to 13 msec via a Neural [...]