Site Information

 Loading... Please wait...

Blog

CAN FD: Enhancing Automotive Communication

The Controller Area Network Flexible Data-Rate (CAN FD) protocol is a significant evolution in the field of automotive communication systems, addressing the increasing demands for speed, efficiency, and reliability in data transmission. Developed as an enhancement to the original CAN protocol, CAN FD offers a higher data rate and larger data payload, making it an [...]

Read More »


Embedded CAN Bus Development with the ESP32 Processor

The Controller Area Network (CAN) bus is a robust communication protocol designed to facilitate data exchange between microcontrollers and devices in automotive and industrial applications. With its high reliability and real-time capabilities, it has become a cornerstone in modern embedded systems. The ESP32, a popular microcontroller from Espressif Systems, offers integrated CAN controller support, making [...]

Read More »


JCOM1939 Monitor Software - A Critical SAE J1939 Diagnostic and Analysis Tool

The JCOM1939 Monitor Software is a specialized tool designed to interface with and monitor data on the SAE J1939 communication network. SAE J1939 is a standardized protocol commonly used in heavy-duty vehicles, agriculture equipment, and industrial machinery for onboard diagnostics and data communication. This essay explores the features, applications, and significance of JCOM1939 Monitor Software in [...]

Read More »


Impact of Cybersecurity Regulations on CAN Bus Embedded Development

Across the globe, regulatory bodies issue rules and regulations related to the cybersecurity of electronic devices. Among the strictest are those from the EU, including the Cybersecurity Act (CSA) and the Cyber Resilience Act (CRA), which all manufacturers of electronic embedded network devices are required to follow. While some manufacturers may temporarily avoid adopting a “security [...]

Read More »


ESP32 Processor: CAN Bus Topology and Termination Resistors

This post is an excerpt from our application note Controller Area Network (CAN) Development with ESP32. It is my experience that newcomers to the technology overlook the importance of termination resistors. Missing or misplaced resistors can lead to transmission errors or even prevent transmission altogether. The general rule is that if you connect to an existing, fully [...]

Read More »


ESP32 Development Kits with Onboard CAN Bus Controller

The ESP32 is a low-cost, low-power system-on-chip microcontroller with integrated WiFi and dual-mode Bluetooth. It is equipped with a Tensilica Xtensa LX6 microprocessor in dual-core and single-core versions. The microcontroller features built-in antenna switches, RF balun, power amplifiers, low-noise receive amplifiers, filters, and power management modules. It is the successor to the ESP8266 SoC. There are [...]

Read More »


Classical CAN (CC), the Original CAN Bus Technology

This post is an excerpt from our application note  Controller Area Network (CAN) Development with ESP32. Note: The term “Classical CAN” was introduced in the ISO 11898-1: 2016 Standard. Classical CAN represents the basis for CAN FD (and CAN XL), meaning they share the same features and advantages, as explained in the previous chapter. While CAN FD adds [...]

Read More »


CAN FD (Controller Area Network Flexible Data Rate)

This post is an excerpt from our application note  Controller Area Network (CAN) Development with ESP32. CAN FD (Controller Area Network Flexible Data Rate) is an extension of the original CAN bus protocol. It was created to provide increased bandwidth within automotive and industrial networks. It brings application software closer to "real-time" by minimizing delays between instruction [...]

Read More »


SAE J1939 Functional Safety Communications Protocol

Commercial road and off-highway vehicles, as well as off-road construction machines, frequently utilize J1939-based application layers. In response to the growing need for functional safety, SAE has created specific protocols for CAN CC (classic) and CAN FD: J1939-76 and J1939-77, respectively. An article on the CiA (CAN-in-Automation) website discusses the SAE standards for functionally safe communications on CAN [...]

Read More »


CANFDuino: Upgrading the Hardware to 24 VDC Power Supply

Today, we are addressing a frequently asked question since the product's launch: 'Is it possible to power CANFDuino off of 12 or 24 V power?'. Our previous response, 'Yes, using the prototyping space to add a regulator', while accurate, may not have been as helpful as we intended. To provide a more practical solution, we [...]

Read More »