
iCC 2012 CAN in Automation

05-17

SocketCAN - The official CAN API of the Linux kernel

Marc Kleine-Budde, Pengutronix

SocketCAN, the official CAN API of the Linux kernel, has been included in the kernel more
than 3 years ago. Meanwhile, the official Linux repository has device drivers for all major
CAN chipsets used in various architectures and bus types. SocketCAN offers the user a
multiuser capable as well as hardware independent socket-based API for CAN based
communication and configuration. In this paper we will at first focus on motivating the
socket based approach used in SocketCAN and continue with a discussion about its
supporting and opposing arguments and current limitations especially in comparison with
other available Linux CAN stacks. We proceed with a close look at the structure and duties
of a generic CAN driver. The usage of the most widespread userspace protocol for sending
and receiving raw CAN frames (SOCK_RAW) is illustrated with a small program. The paper
concludes with some remarks on the outlook of upcoming contributions and enhancements
such as an isotp and a J1939 protocol implementation.

The first ideas of a socket based networking
stack for CAN devices go back to 2002. There
were several CAN implementations for Linux
available back then, and some still are.

They take the classic character device
approach, each CAN controller forming a
device node, similar to serial device drivers,
disregarding the Linux networking stack. These
device nodes provide a simple, to some extent
abstract interface to both send and receive
CAN frames and configure the CAN controller.

Some of these projects are community driven
while others being provided by hardware
vendors. This and the nonstandard Linux CAN
driver model approach has led to several
drawbacks:i

ñ Change of CAN hardware vendor urges
the adaptation of the CAN application.

ñ Higher protocol levels and complex
filtering have to be implemented in the
userspace application.

ñ Only one application can use a CAN
interface at a time.

Evolution of the character device drivers

LinCAN, which is part of the OCERA project, is
based on “can-0.7.1” (originally created by
Arnaud Westenberg) and addresses some of
the already mentioned drawbacks. Especially
the limitation to a single application per CAN
interface has been removed by adding a

“message processing” layer based on an
“oriented graph of FIFOs”ii.

The Linux networking subsystem

The Linux networking subsystem, widely
known for the implementation of the
TCP/IP protocol suite, is highly flexible.
Next to IPv6 and IPv4, it contains several
other networking protocols such as ATM,
ISDN and the kernel part of the official
Linux Bluetooth stack.

iCC 2012 CAN in Automation

05-18

Taking a web or ftp server as an example, the
above figure illustrates the different networking
layers within the Linux kernel.

Starting at the application level, there is the
standard POSIX socket API defining the
interface to the kernel. Underneath follows the
protocol layer, consisting of protocol families
(here PF_INET) that implement different
networking protocols. Within each family you
can find several protocols (here TCP and
UDP). Below this level the routing and packet
scheduling layer exists followed by the last one
that consists of the drivers for the networking
hardware.

A socket-based approach

In order to bring CAN networking to the Linux
kernel, CAN support has been added to the
existing networking subsystem. This primarily
consists of two parts:

1. A new protocol family PF_CAN
including a CAN_RAW protocol,

2. the drivers for various CAN networking
devices.

This approach brings several design
advantages over the earlier mentioned
character-device based solutions:

ñ Taking benefit of the existing and
established POSIX socket API to
assist the application developer.

ñ The new protocol family is developed
against established abstractions
layers, the socket layer above and
the packet scheduler below.

ñ CAN network device drivers
implement the same standardized
networking driver model as Ethernet
drivers.

ñ Communication protocols and
complex filtering can be implemented
inside the kernel.

ñ Support for multi-user and multi-
application access to a single CAN
interface is possible.

Multi-application support

The new protocol family PF_CAN and the
CAN_RAW protocol have support for
multiple CAN frame is transmitted to all
applications which are interested.

But what about local originated CAN
messages? Consider two embedded system
connected via CAN, both systems are
running a SocketCAN based application.
Frames from one application reach the other
application on the remote system via the
CAN bus and vice versa. If these
applications are concentrated on one system
the CAN messages between these two
applications still have to be exchanged. In
order to guarantee the sequence of frames
the local originated message is put into the
RX queue, when the transmission on the
wire is complete. This is usually done in the
transmission complete interrupt handler of
the sending CAN controller. Echo capable
drivers set the “IFF_ECHO” flag in the
netdevice's flags field, otherwise the
framework will try to emulate echoing but the
order of CAN frames cannot be guaranteed
anymore.

Drawbacks and limitations

Using a networking subsystem which has
been designed for much larger packages (64
bytes for a minimal Ethernet frame,
compared to the maximal 8 data bytes in a
can frame) brings more memory overhead

iCC 2012 CAN in Automation

05-19

than simpler character device solutions.

Moreover as the above figure indicates the
packet scheduler is a shared resource
among all networking devices (both Ethernet
and CAN). Heavy traffic on the Ethernet
finally leads to delays in CAN traffic. See
paper “Timing Analysis of Linux CAN
Drivers”iii for a more detailed analysis.

SocketCAN does not support hardware filtering
of incoming CAN frames. Currently all CAN
frames are received and passed to the CAN
networking layer core, which processes the
application specific filter lists. Activation of
hardware filters would lead to an overall
reduction of the received CAN traffic, but are –
in contrast to the per application filters – a
global setting. In a multi-user, multi-application
scenario hardware filters are not feasible until
the overall CAN design has been finalized and
it is well known which CAN data is needed on
the system.

CAN networking device drivers

With a high level of abstraction the functionality
of a CAN networking device driver can be
described as follows:

ñ The kernel driver initializes and
configures the hardware,

ñ incoming CAN frames are received and
pushed to the upper layer,

ñ outgoing frames are obtained from the
upper layer and transmitted to the wire

The above listed requirements are – from this
point of view – almost identical to Ethernet
drivers, apart from the fact that instead of
Ethernet frames, CAN frames are handled. The
design decision is: Make use of the already
established standard abstraction of an Ethernet
driver in the Linux kernel for CAN networking
drivers, as well.

Hardware initialization

The initialization and configuration of the
hardware is usually a two-step process:

1. Once only via the "probe()" function.
2. Every time an interface is opened

(“ifconfig can0 up”) via the “open()”
callback.

When a driver is loaded, the kernel calls the
driver's "probe()" function once per suitable

device. This function performs the basic
initialization: all resources like address
ranges, IRQ numbers, clocks and memory
are requested.

static int flexcan_probe(
 structplatform_device *pdev)
{
 struct net_device *dev;
 struct flexcan_priv *priv;
[...]
 dev = alloc_candev(
 sizeof(struct flexcan_priv), 0);
 dev->netdev_ops =
 &flexcan_netdev_ops;
[...]
 priv = netdev_priv(dev);
 priv->can.bittiming_const =
 &flexcan_bittiming_const;
[...]
 return register_candev(dev);
}

As shown in the listing, the driver allocates
the structure describing a networking device
within the Linux networking stack as a "struct
net_device". Several variables are assigned,
most importantly “netdev_ops”, which
contains pointers to the management
functions of the interface. CAN devices
usually implement just three:

ñ The “open” and “close” callbacks point
to the second part of the hardware
configuration as already mentioned
above.

ñ “start_xmit” - short for: start to
transmit, is called by the packet
scheduler when a CAN frame comes
from an application and should be
transmitted by the driver.

The next significant structure is “struct
bittiming_const”. It describes the bit timing
limits (tseg1, tseg2, …) of the hardware in
multiple of the Time Quantum, i.e. in a clock
rate independent way.

The CAN framework contains an algorithm to
calculate the actual bit timing parameter
based on the requested bit rate, the current
can clock and the bit timing parameters.
Finally with “register_candev()” the CAN
device is registered at the networking
subsystem. The device will now show up as
a CAN interface (“can0”) in the list of
available interfaces (“ifconfig -a”), but
remains inactive.

The second part of the hardware initialization

iCC 2012 CAN in Automation

05-20

is accomplished upon activation of the CAN
interface by the user (“ifconfig can0 up”). The
network layer calls the previously registered
“open()” function. In this case the driver must
finish the configuration and should be ready
to send and receive CAN frames. This
usually includes programming of the desired
bitrate into the hardware, requesting an
interrupt and activating the interrupt sources.

CAN frame reception

Looking at the receive path we can distinguish
between CAN controllers with a single frame
receive buffer (or mailbox) and controllers with
multiple ones. As SocketCAN doesn't support
receive filters (yet), all buffers and mailboxes
must be configured to accept all CAN frames. If
the hardware features permit, multiple buffers
can be linked to a FIFO or circular buffer.
Drivers must take care to preserve the order of
incoming CAN frames, as higher level
protocols and applications rely on the correct
frame sequence.

With the reception of a CAN frame the
controller issues an interrupt and Linux will
execute the registered interrupt handler. There
are two possibilities to handle incoming
packets:

1. read the frames immediately in the IRQ
handler or

2. schedule a routine to read multiple
frames later in a software IRQ context.
This technique is called “NAPI”.

The immediate frame processing is used on
controllers with a single receive buffer or low
end hardware with a small FIFO depth.

Delayed processing depends on hardware with
a large RX FIFO, capable of buffering incoming
CAN frames until the NAPI handler starts. This
procedure leads to less time spent inside the
interrupt handler, which increases the system's
reactivity and helps to decrease the IRQ load,
as multiple CAN frames can be processed
within a single scheduled NAPI request.

The following listing illustrates the steps to read
a single frame and pass it to the upper layer –
the packet scheduler.

static int flexcan_read_frame(
 struct net_device *dev)
{
 struct can_frame *cf;

 struct sk_buff *skb;

 skb = alloc_can_skb(dev, &cf);
 flexcan_read_fifo(dev, cf);
 netif_receive_skb(skb);

 return 1;
}

Here, two important data types are utilized:

ñ “struct sk_buff”
The generic data type in the Linux
kernel to describe a socket buffer in
the networking stack. It includes meta
data and the payload.

ñ “struct can_frame”
The SocketCAN abstraction of a CAN
frame, consists of the CAN id, the
data length code (dlc) and the eight
data bytes.

First, the driver allocates a generic buffer
with the “alloc_can_skb()” function, which
marks the buffer as a CAN frame and lets
“cf” point to the “struct can_frame” within the
buffer's payload. In this example a hardware
dependent helper function
“flexcan_read_fifo()” is called to read the
CAN frame from the controller's FIFO and
store it in the “can_frame” and thus into the
generic buffer. In a NAPI capable driver like
this the “netif_receive_skb()” function is used
to push the CAN frame into the packet
scheduler. From an IRQ handler the buffer is
passed via the “netif_rx()” function instead.

CAN frame transmission

The transmission of a CAN frame is
originated in the local system, usually in the
userspace. For example: an application
wants to send raw CAN frames (abstracted
by the “struct can_frame”), a CAN_RAW
socket is opened and a “write()” or “send()”
system call is issued. The CAN_RAW
protocol copies the CAN frame into the
kernel space and passes it to the packet
scheduler. During the run of the packet
scheduler in a soft IRQ context the driver's
“start_xmit()” function will be called to
activate the transmission of the CAN frame.

The above outlined sequence is missing the
flow control. An application might generate
CAN frames faster than the CAN hardware is
able to send. The CAN networking
subsystem implements flow control in the
layers above the packet scheduler. The

iCC 2012 CAN in Automation

05-21

driver has a simple, standard interface to
control the flow of CAN frames coming from
the packet scheduler.

Each interface has a transmission queue in the
packet scheduler. During activation of the
network interface (see “open()” callback above)
the transmission queue is started. The packet
scheduler may now call the driver's
“start_xmit()” function to trigger a packet
transmission. The driver must stop the queue if
there are no more transmission buffers left in
the hardware.

An “xmit()” function of a driver using only one
transmit buffer looks as follows:

static int flexcan_start_xmit(
 struct sk_buff *skb,
 struct net_device *dev)
{
 struct can_frame *cf =
 (struct can_frame *)skb->data;

 netif_stop_queue(dev);
 can_put_echo_skb(skb, dev, 0);
 flexcan_write_frame(dev, cfe);

 return NETDEV_TX_OK;
}

The first argument of the “xmit()” function is a
pointer to the generic socket buffer that should
be transmitted. The buffer's payload
(“skb->data”) contains the standard SocketCAN
frame. As the driver makes only use of one TX
buffer, the queue is now stopped with the
“netif_stop_queue()” function. Then the buffer is
queued for later echoing “can_put_echo_skb()”
(see multi application support above). Finally
the CAN frame is transmitted by the hardware
dependent function “flexcan_write_frame()”.
Returning NETDEV_TX_OK indicates the
successful start of transmission to the packet
scheduler
The “transmission complete” part of the
interrupt handler is shown below:

static irqreturn_t flexcan_irq(
 int irq, void *dev_id)
{
 struct net_device *dev = dev_id;
 u32 reg_iflag1;

[...]

 /* transmission complete IRQ */
 if (reg_iflag1 & FLEXCAN_TX_IRQ) {
 flexcan_ack_tx_irq(dev);
 can_get_echo_skb(dev, 0);
 netif_wake_queue(dev);

 }

 return IRQ_HANDLED;
}

If a transmission complete interrupt is
detected, it is first acknowledged, then the
previously queued socket buffer is echoed
back with “can_get_echo_skb()”. As the only
hardware TX buffer is now free, the queue
has to be woken up with
“netif_wake_queue()”.

If the hardware implements a TX FIFO, the
driver can make use of it, too. The TX queue
stays active until all buffers in the hardware
FIFO are occupied and is reactivated if there
is free space in the FIFO again. If using
more than one TX buffer at a time, the driver
has – analogous to the RX path – to take
care of preserving the order of CAN frames.

Applications and the CAN_RAW protocol

The simplest of methods to access the CAN
bus is to send and receive raw CAN frames.
This programming interface, which is similar
to the character device drivers, is offered by
the CAN_RAW protocol. The application
developer creates a networking socket and
uses the standard system calls to read and
write CAN frames, represented by the “struct
can_frame”. A CAN frame is defined as
following:

/* special address description flags
 for the CAN_ID */

/* EFF/SFF is set in the MSB */
#define CAN_EFF_FLAG 0x80000000U

/* remote transmission request */
#define CAN_RTR_FLAG 0x40000000U

/* error frame */
#define CAN_ERR_FLAG 0x20000000U

struct can_frame {
 /* 32 bit CAN_ID +
 EFF/RTR/ERR flags */
 canid_t can_id;

 /* data length code: 0 .. 8 */
 __u8 can_dlc;

 __u8 data[8]
 __attribute__((aligned(8)));
};

“can_id” is 32 bit wide, holding the CAN id in
the lower 11 bit. An extended CAN id is
indicated by a set “CAN_EFF_FLAG” flag,

iCC 2012 CAN in Automation

05-22

the CAN id then covers the lower 29 bits. An
RTR frame is signaled by the
“CAN_RTR_FLAG” flag. “can_dlc” defines
the number of used data bytes in the CAN
frame, The payload of 8 bytes is located in
the “data” array.

The following listing shows an example
userspace program. First a socket is opened,
the parameters of the “socket()” function
request a “CAN_RAW” socket. Then the
socket is “bind()” to the first CAN interface. A
CAN frame is filled with data and then
transmitted with the “write()” call. To receive
CAN frames, “read()” is used in an analog way.

/* omitted vital #includes and error checking */

int main(int argc, char **argv)
{
 struct ifreq ifr;
 struct sockaddr_can addr;
 struct can_frame frame;
 int s;

 memset(&ifr, 0x0, sizeof(ifr));
 memset(&addr, 0x0, sizeof(addr));
 memset(&frame, 0x0, sizeof(frame));

 /* open CAN_RAW socket */
 s = socket(PF_CAN, SOCK_RAW, CAN_RAW);

 /* convert interface sting "can0" into interface index */
 strcpy(ifr.ifr_name, "can0");
 ioctl(s, SIOCGIFINDEX, &ifr);

 /* setup address for bind */
 addr.can_ifindex = ifr.ifr_ifindex;
 addr.can_family = PF_CAN;

 /* bind socket to the can0 interface */
 bind(s, (struct sockaddr *)&addr, sizeof(addr));

 /* first fill, then send the CAN frame */
 frame.can_id = 0x23;
 strcpy((char *)frame.data, "hello");
 frame.can_dlc = 5;
 write(s, &frame, sizeof(frame));

 /* first fill, then send the CAN frame */
 frame.can_id = 0x23;
 strcpy((char *)frame.data, "iCC2012");
 frame.can_dlc = 7;
 write(s, &frame, sizeof(frame));
 close(s);

 return 0;

Outlook and Conclusion

Although the kernel internal interfaces are
stable, there is a constant evolution in the
kernel going on. Reevaluation of existing
concepts, improvement, new features and
consolidation doesn't stop before the
SocketCAN core or it's drivers. For example
at the time of writing the error handling in the
CAN drivers are consolidated and unified.

Another interesting topic are CAN protocols
(next to CAN_RAW) that have not been
mentioned in this paper. There is
CAN_BCM, which stands for broadcast
manager. It's mainly used in the automotive
domain where cyclic sending of messages is
needed. The upcoming Kernel version v3.2
will be support CAN_GW a Kernel based
gateway/router that routes CAN messages
between CAN
interfaces and optionally modifies them. In
development and not part of the official
Kernel is support for CAN_ISOTP which
implements the ISO 15765-2 CAN transport
protocol. It allows a reliable point-to-point
communication over a CAN infrastructure.
Development for automotive protocol SAE
J1939 has just been started.

The SocketCAN framework presents the
developer a multi application capable,
standard POSIX socket based API to send
and receive raw CAN frames independent
from the used
CAN controller.
It further offers the driver developer a
standard network driver model known from
Ethernet drivers. The PF_CAN protocol layer
provides a Kernel internal infrastructure for
CAN frame sending/reception and filtering to
implement more complex protocols inside
the Kernel.

Marc Kleine-Budde
Pengutronix e.K.
Peiner Straße 6-8
31137 Hildesheim
Phone: +49 51 21 / 20 69 17 - 0
Fax: +49 51 21 / 20 69 17 - 55 55
mkl@pengutronix.de
www.pengutronix.de/

