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SocketCAN, the official CAN API of the Linux kernel, has been included in the kernel more 
than 3 years ago. Meanwhile, the official Linux repository has device drivers for all major 
CAN chipsets used in various architectures and bus types. SocketCAN offers the user a 
multiuser capable as well as hardware independent socket-based API for CAN based 
communication and configuration. In this paper we will at first focus on motivating the 
socket based approach used in SocketCAN and continue with a discussion about its 
supporting and opposing arguments and current limitations especially in comparison with 
other available Linux CAN stacks. We proceed with a close look at the structure and duties 
of a generic CAN driver. The usage of the most widespread userspace protocol for sending 
and receiving raw CAN frames (SOCK_RAW) is illustrated with a small program. The paper 
concludes with some remarks on the outlook of upcoming contributions and enhancements 
such as an isotp and a J1939 protocol implementation. 
 
 
The first ideas of a socket based networking 
stack for CAN devices go back to 2002. There 
were several CAN implementations for Linux 
available back then, and some still are. 
 
They take the classic character device 
approach, each CAN controller forming a 
device node, similar to serial device drivers, 
disregarding the Linux networking stack. These 
device nodes provide a simple, to some extent 
abstract interface to both send and receive 
CAN frames and configure the CAN controller.  
 
Some of these projects are community driven 
while others being provided by hardware 
vendors. This and the nonstandard Linux CAN 
driver model approach has led to several 
drawbacks:i 
 

ñ Change of CAN hardware vendor urges 
the adaptation of the CAN application. 

ñ Higher protocol levels and complex 
filtering have to be implemented in the 
userspace application. 

ñ Only one application can use a CAN 
interface at a time. 

Evolution of the character device drivers 

LinCAN, which is part of the OCERA project, is 
based on “can-0.7.1” (originally created by  
Arnaud Westenberg) and addresses some of  
the already mentioned drawbacks. Especially 
the limitation to a single application per CAN  
interface has been removed by adding a  
 
 

 
 
 
“message processing” layer based on an 
“oriented graph of FIFOs”ii. 

The Linux networking subsystem 

The Linux networking subsystem, widely 
known for the implementation of the 
TCP/IP protocol suite, is highly flexible. 
Next to IPv6 and IPv4, it contains several 
other networking protocols such as ATM, 
ISDN and the kernel part of the official 
Linux Bluetooth stack. 
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Taking a web or ftp server as an example, the 
above figure illustrates the different networking 
layers within the Linux kernel. 
 
Starting at the application level, there is the 
standard POSIX socket API defining the 
interface to the kernel. Underneath follows the 
protocol layer, consisting of protocol families 
(here PF_INET) that implement different 
networking protocols. Within each family you 
can find several protocols (here TCP and 
UDP). Below this level the routing and packet 
scheduling layer exists followed by the last one 
that consists of the drivers for the networking 
hardware. 

A socket-based approach 

In order to bring CAN networking to the Linux 
kernel, CAN support has been added to the 
existing networking subsystem. This primarily 
consists of two parts: 
 

1. A new protocol family PF_CAN 
including a CAN_RAW protocol, 

2. the drivers for various CAN networking 
devices. 

 

 
 
 

This approach brings several design 
advantages over the earlier mentioned 
character-device based solutions: 
 

ñ Taking benefit of the existing and 
established POSIX socket API to 
assist the application developer. 

ñ The new protocol family is developed 
against established abstractions 
layers, the socket layer above and 
the packet scheduler below. 

ñ CAN network device drivers 
implement the same standardized 
networking driver model as Ethernet 
drivers. 

ñ Communication protocols and 
complex filtering can be implemented 
inside the kernel. 

ñ Support for multi-user and multi-
application access to a single CAN 
interface is possible. 

Multi-application support 

The new protocol family PF_CAN and the 
CAN_RAW protocol have support for 
multiple CAN frame is transmitted to all 
applications which are interested. 
 
But what about local originated CAN 
messages? Consider two embedded system 
connected via CAN, both systems are 
running a SocketCAN based application. 
Frames from one application reach the other 
application on the remote system via the 
CAN bus and vice versa. If these 
applications are concentrated on one system 
the CAN messages between these two 
applications still have to be exchanged. In 
order to guarantee the sequence of frames 
the local originated message is put into the 
RX queue, when the transmission on the 
wire is complete. This is usually done in the 
transmission complete interrupt handler of 
the sending CAN controller. Echo capable 
drivers set the “IFF_ECHO” flag in the 
netdevice's flags field, otherwise the 
framework will try to emulate echoing but the 
order of CAN frames cannot be guaranteed 
anymore. 

Drawbacks and limitations 

Using a networking subsystem which has 
been designed for much larger packages (64 
bytes for a minimal Ethernet frame, 
compared to the maximal 8 data bytes in a 
can frame) brings more memory overhead 
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than simpler character device solutions. 
 
Moreover as the above figure indicates the 
packet scheduler is a shared resource 
among all networking devices (both Ethernet 
and CAN). Heavy traffic on the Ethernet 
finally leads to delays in CAN traffic. See 
paper “Timing Analysis of Linux CAN 
Drivers”iii for a more detailed analysis. 
 
SocketCAN does not support hardware filtering 
of incoming CAN frames. Currently all CAN 
frames are received and passed to the CAN 
networking layer core, which processes the 
application specific filter lists. Activation of 
hardware filters would lead to an overall 
reduction of the received CAN traffic, but are – 
in contrast to the per application filters – a 
global setting. In a multi-user, multi-application 
scenario hardware filters are not feasible until 
the overall CAN design has been finalized and 
it is well known which CAN data is needed on 
the system. 

CAN networking device drivers 

With a high level of abstraction the functionality 
of a CAN networking device driver can be 
described as follows: 
 

ñ The kernel driver initializes and 
configures the hardware, 

ñ incoming CAN frames are received and 
pushed to the upper layer, 

ñ outgoing frames are obtained from the 
upper layer and transmitted to the wire  

 
The above listed requirements are – from this 
point of view – almost identical to Ethernet 
drivers, apart from the fact that instead of 
Ethernet frames, CAN frames are handled. The 
design decision is: Make use of the already 
established standard abstraction of an Ethernet 
driver in the Linux kernel for CAN networking 
drivers, as well. 

Hardware initialization 

The initialization and configuration of the 
hardware is usually a two-step process: 
 

1. Once only via the "probe()" function. 
2. Every time an interface is opened 

(“ifconfig can0 up”) via the “open()” 
callback. 

 
When a driver is loaded, the kernel calls the 
driver's "probe()" function once per suitable 

device. This function performs the basic 
initialization: all resources like address 
ranges, IRQ numbers, clocks and memory 
are requested.  
 
static int flexcan_probe( 
     structplatform_device *pdev) 
{ 
 struct net_device *dev; 
 struct flexcan_priv *priv; 
[...] 
 dev = alloc_candev( 
     sizeof(struct flexcan_priv), 0); 
 dev->netdev_ops =  
     &flexcan_netdev_ops; 
[...] 
 priv = netdev_priv(dev); 
 priv->can.bittiming_const = 
  &flexcan_bittiming_const; 
[...] 
 return register_candev(dev); 
} 
 
As shown in the listing, the driver allocates 
the structure describing a networking device 
within the Linux networking stack as a "struct 
net_device".  Several variables are assigned, 
most importantly “netdev_ops”, which 
contains pointers to the management 
functions of the interface. CAN devices 
usually implement just three: 
 

ñ The “open” and “close” callbacks point 
to the second part of the hardware 
configuration as already mentioned 
above. 

ñ “start_xmit” - short for: start to 
transmit, is called by the packet 
scheduler when a CAN frame comes 
from an application and should be 
transmitted by the driver. 

 
The next significant structure is “struct 
bittiming_const”. It describes the bit timing 
limits (tseg1, tseg2, …) of the hardware in 
multiple of the Time Quantum, i.e. in a clock 
rate independent way. 
 
The CAN framework contains an algorithm to 
calculate the actual bit timing parameter 
based on the requested bit rate, the current 
can clock and the bit timing parameters. 
Finally with “register_candev()” the CAN 
device is registered at the networking 
subsystem. The device will now show up as 
a CAN interface (“can0”) in the list of 
available interfaces (“ifconfig -a”), but 
remains inactive. 
 
The second part of the hardware initialization 
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is accomplished upon activation of the CAN 
interface by the user (“ifconfig can0 up”). The 
network layer calls the previously registered 
“open()” function. In this case the driver must 
finish the configuration and should be ready 
to send and receive CAN frames. This 
usually includes programming of the desired 
bitrate into the hardware, requesting an 
interrupt and activating the interrupt sources. 

CAN frame reception 

Looking at the receive path we can distinguish 
between CAN controllers with a single frame 
receive buffer (or mailbox) and controllers with 
multiple ones. As SocketCAN doesn't support 
receive filters (yet), all buffers and mailboxes 
must be configured to accept all CAN frames. If 
the hardware features permit, multiple buffers 
can be linked to a FIFO or circular buffer. 
Drivers must take care to preserve the order of 
incoming CAN frames, as higher level 
protocols and applications rely on the correct 
frame sequence. 
 
With the reception of a CAN frame the 
controller issues an interrupt and Linux will 
execute the registered interrupt handler. There 
are two possibilities to handle incoming 
packets: 
 

1. read the frames immediately in the IRQ 
handler or 

2. schedule a routine to read multiple 
frames later in a software IRQ context. 
This technique is called “NAPI”. 

 
The immediate frame processing is used on 
controllers with a single receive buffer or low 
end hardware with a small FIFO depth.   
 
Delayed processing depends on hardware with 
a large RX FIFO, capable of buffering incoming 
CAN frames until the NAPI handler starts. This 
procedure leads to less time spent inside the 
interrupt handler, which increases the system's 
reactivity and helps to decrease the IRQ load, 
as multiple CAN frames can be processed 
within a single scheduled NAPI request. 
 
The following listing illustrates the steps to read 
a single frame and pass it to the upper layer – 
the packet scheduler. 
 
static int flexcan_read_frame( 
    struct net_device *dev) 
{ 
 struct can_frame *cf; 

 struct sk_buff *skb; 
 
 skb = alloc_can_skb(dev, &cf); 
 flexcan_read_fifo(dev, cf); 
 netif_receive_skb(skb); 
 
 return 1; 
} 
 
Here, two important data types are utilized: 
 

ñ “struct sk_buff” 
The generic data type in the Linux 
kernel to describe a socket buffer in 
the networking stack. It includes meta 
data and the payload. 

ñ “struct can_frame” 
The SocketCAN abstraction of a CAN 
frame, consists of the CAN id, the 
data length code (dlc) and the eight 
data bytes. 

 
First, the driver allocates a generic buffer 
with the “alloc_can_skb()” function,  which 
marks the buffer as a CAN frame and lets 
“cf”  point to the “struct can_frame” within the 
buffer's payload. In this example a hardware 
dependent helper function 
“flexcan_read_fifo()” is called to read the 
CAN frame from the controller's FIFO and 
store it in the “can_frame” and thus into the 
generic buffer. In a NAPI capable driver like 
this the “netif_receive_skb()” function is used 
to push the CAN frame into the packet 
scheduler. From an IRQ handler the buffer is 
passed via the “netif_rx()” function instead. 

CAN frame transmission 

The transmission of a CAN frame is 
originated in the local system, usually in the 
userspace. For example: an application 
wants to send raw CAN frames (abstracted 
by the “struct can_frame”), a CAN_RAW 
socket is opened and a “write()” or “send()” 
system call is issued. The CAN_RAW 
protocol copies the CAN frame into the 
kernel space and passes it to the packet 
scheduler. During the run of the packet 
scheduler in a soft IRQ context the driver's 
“start_xmit()” function will be called to 
activate the transmission of the CAN frame. 
 
The above outlined sequence is missing the  
flow control. An application might generate 
CAN frames faster than the CAN hardware is 
able to send. The CAN networking 
subsystem implements flow control in the 
layers above the packet scheduler. The 
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driver has a simple, standard interface to 
control the flow of CAN frames coming from 
the packet scheduler. 
 
Each interface has a transmission queue in the 
packet scheduler. During activation of the 
network interface (see “open()” callback above) 
the transmission queue is started. The packet 
scheduler may now call the driver's 
“start_xmit()” function to trigger a packet 
transmission. The driver must stop the queue if 
there are no more transmission buffers left in 
the hardware. 
 
An “xmit()” function of a driver using only one 
transmit buffer looks as follows: 
 
static int flexcan_start_xmit( 
 struct sk_buff *skb, 
 struct net_device *dev) 
{ 
 struct can_frame *cf = 
     (struct can_frame *)skb->data; 
 
 netif_stop_queue(dev); 
 can_put_echo_skb(skb, dev, 0); 
 flexcan_write_frame(dev, cfe); 
 
 return NETDEV_TX_OK; 
} 
 
The first argument of the “xmit()” function is a 
pointer to the generic socket buffer that should 
be transmitted. The buffer's payload 
(“skb->data”) contains the standard SocketCAN 
frame. As the driver makes only use of one TX 
buffer, the queue is now stopped with the 
“netif_stop_queue()” function. Then the buffer is 
queued for later echoing “can_put_echo_skb()” 
(see multi application support above). Finally 
the CAN frame is transmitted by the hardware 
dependent function “flexcan_write_frame()”. 
Returning NETDEV_TX_OK indicates the 
successful start of transmission to the packet 
scheduler  
The “transmission complete” part of the 
interrupt handler is shown below: 
 
static irqreturn_t flexcan_irq( 
 int irq, void *dev_id) 
{ 
 struct net_device *dev = dev_id; 
 u32 reg_iflag1; 
 
[...] 
 
 /* transmission complete IRQ */ 
 if (reg_iflag1 & FLEXCAN_TX_IRQ) { 
  flexcan_ack_tx_irq(dev); 
  can_get_echo_skb(dev, 0); 
  netif_wake_queue(dev); 

 } 
 
 return IRQ_HANDLED; 
} 
 
If a transmission complete interrupt is 
detected, it is first acknowledged, then the 
previously queued socket buffer is echoed 
back with “can_get_echo_skb()”. As the only 
hardware TX buffer is now free, the queue 
has to be woken up with 
“netif_wake_queue()”. 
 
If the hardware implements a TX FIFO, the 
driver can make use of it, too. The TX queue 
stays active until all buffers in the hardware 
FIFO are occupied and is reactivated if there 
is free space in the FIFO again. If using 
more than one TX buffer at a time, the driver 
has – analogous to the RX path – to take 
care of preserving the order of CAN frames. 

Applications and the CAN_RAW protocol 

The simplest of methods to access the CAN 
bus is to send and receive raw CAN frames. 
This programming interface, which is similar 
to the character device drivers, is offered by 
the CAN_RAW protocol. The application 
developer creates a networking socket and 
uses the standard system calls to read and 
write CAN frames, represented by the “struct 
can_frame”. A CAN frame is defined as 
following: 
 
/* special address description flags 
   for the CAN_ID */ 
 
/* EFF/SFF is set in the MSB */ 
#define CAN_EFF_FLAG 0x80000000U 
 
/* remote transmission request */ 
#define CAN_RTR_FLAG 0x40000000U 
 
/* error frame */ 
#define CAN_ERR_FLAG 0x20000000U 
 
struct can_frame { 
 /* 32 bit CAN_ID + 
    EFF/RTR/ERR flags */ 
 canid_t can_id; 
 
 /* data length code: 0 .. 8 */ 
 __u8    can_dlc; 
 
 __u8    data[8] 
     __attribute__((aligned(8))); 
}; 
 
“can_id” is 32 bit wide, holding the CAN id in 
the lower 11 bit. An extended CAN id is 
indicated by a set “CAN_EFF_FLAG” flag, 



iCC 2012                                                                                                               CAN in Automation 
 

05-22 

the CAN id then covers the lower 29 bits. An 
RTR frame is signaled by the 
“CAN_RTR_FLAG” flag. “can_dlc”  defines 
the number of used data bytes in the CAN 
frame, The payload of 8 bytes is located in 
the “data” array. 
 
The following listing shows an example 
userspace program. First a socket is opened, 
the parameters of the “socket()” function 
request a “CAN_RAW” socket. Then the 
socket is “bind()” to the first CAN interface. A 
CAN frame is filled with data and then 
transmitted with the “write()” call. To receive 
CAN frames, “read()” is used in an analog way. 
 
/* omitted vital #includes and error checking */ 
 
int main(int argc, char **argv) 
{ 
 struct ifreq ifr; 
 struct sockaddr_can addr; 
 struct can_frame frame; 
 int s; 
 
 memset(&ifr, 0x0, sizeof(ifr)); 
 memset(&addr, 0x0, sizeof(addr)); 
 memset(&frame, 0x0, sizeof(frame)); 
 
 /* open CAN_RAW socket */ 
 s = socket(PF_CAN, SOCK_RAW, CAN_RAW); 
 
 /* convert interface sting "can0" into interface index */ 
 strcpy(ifr.ifr_name, "can0"); 
 ioctl(s, SIOCGIFINDEX, &ifr); 
 
 /* setup address for bind */ 
 addr.can_ifindex = ifr.ifr_ifindex; 
 addr.can_family = PF_CAN; 
 
 /* bind socket to the can0 interface */ 
 bind(s, (struct sockaddr *)&addr, sizeof(addr)); 
 
 /* first fill, then send the CAN frame */ 
 frame.can_id = 0x23; 
 strcpy((char *)frame.data, "hello"); 
 frame.can_dlc = 5; 
 write(s, &frame, sizeof(frame)); 
 
 /* first fill, then send the CAN frame */ 
 frame.can_id = 0x23; 
 strcpy((char *)frame.data, "iCC2012"); 
 frame.can_dlc = 7; 
 write(s, &frame, sizeof(frame)); 
 close(s); 
 
 return 0;

Outlook and Conclusion 
 
Although the kernel internal interfaces are 
stable, there is a constant evolution in the 
kernel going on. Reevaluation of existing 
concepts, improvement, new features and 
consolidation doesn't stop before the 
SocketCAN core or it's drivers. For example 
at the time of writing the error handling in the 
CAN drivers are consolidated and unified. 
 
Another interesting topic are CAN protocols 
(next to CAN_RAW) that have not been 
mentioned in this paper. There is 
CAN_BCM, which stands for broadcast 
manager. It's mainly used in the automotive 
domain where cyclic sending of messages is 
needed. The upcoming Kernel version v3.2 
will be support CAN_GW a Kernel based 
gateway/router that routes CAN messages 
between CAN  
interfaces and optionally modifies them. In 
development and not part of the official 
Kernel is support for CAN_ISOTP which 
implements the ISO 15765-2 CAN transport 
protocol. It allows a reliable point-to-point 
communication over a CAN infrastructure.  
Development for automotive protocol SAE 
J1939 has just been started. 
 
The SocketCAN framework presents the  
developer a multi application capable, 
standard POSIX socket based API to send 
and receive raw CAN frames independent 
from the used 
CAN controller.  
It further offers the driver developer a 
standard network driver model known from 
Ethernet drivers. The PF_CAN protocol layer 
provides a Kernel internal infrastructure for 
CAN frame sending/reception and filtering to 
implement more complex protocols inside 
the Kernel. 
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