
4 CAN Newsletter 2/2020

CAN XL offers data-rates and payload sizes that are
many times higher than in Classical CAN and CAN FD

[1], [2]. Error detection is a crucial functionality provided
by communication protocols. A receiving node has to be
able to judge if a frame was received with or without errors.
Autonomous driving and other safety relevant applications
require that frame errors are detected with a very high
probability. The acceptance of an erroneous frame should
be practically impossible. This article first introduces the
three CAN error types known in literature that might occur
in a frame in harsh environments: (1) bit error, (2) bit drop
and bit insertion, (3) burst errors. The two main pillars
of the CAN error detection mechanism are: (A) the
cyclic redundancy code (CRC) check and (B) the format
checks. Both pillars are strengthened during the currently
RQJRLQJ� VSHFLILFDWLRQ� RI� &$1� ;/�� WR� ILW� WR� WRPRUURZ·V�
applications.

We explain how these pillars were improved. Therefor
we show the reasons for the chosen CRC concept of
having both a header CRC and a frame CRC in a CAN XL
frame. Further, we introduce the available format checks
in CAN XL. Finally, we show systematically how the CAN
XL error detection mechanisms master to detect the three
error types. A deep dive into the properties and strengths
of the used CRC polynomials is given in [9].

Introduction

&$1�;/�LV�FXUUHQWO\�EHLQJ�VSHFLILHG�LQVLGH�WKH�&L$·V��&$1�
in Automation) CAN XL Special Interest Group. The first
specification meeting took place in Nuremberg (Germany)
on December 17th 2018. The CiA 610-1 specification doc-
ument, which focuses on OSI layer 2 (known as CAN XL
protocol), was not yet finished at the time of writing this ar-
ticle. Consequently, the final CiA 601-1 specification may
show differences compared to the content presented in
here. [3] gives an overview about the current CAN XL sta-
tus. Some of the main features of CAN XL are:

 X data field size up to 2 048 byte
 X gross bit-rate of 10 Mbit/s and more
 X strong error detection capabilities

With its higher data-rates and payload sizes, CAN XL is the next step in the
evolution of CAN. Besides this, CAN XL also provides improved error detection
capabilities.

CAN XL error detection capabilities

With this set of features CAN enables the usage
of higher layer protocols like IP (Internet Protocol). At
the same time, it eases the implementation of safety
critical applications with its excellent error detection
capabilities and its well-known robustness. Two very
essential functions in a communication protocol are the
error detection and the error handling. They have a large
impact on the reliability of the communication system. The
focus of this article is the error detection mechanisms in
CAN XL.

This article consist of three parts. Part 1 introduces
the CAN XL error detection mechanisms and explains how
these were improved compared to CAN FD. In this part, the
reasons are given for the chosen CRC concept of having
a header CRC and a frame CRC in a CAN XL frame. Part
2 introduces the error types known in literature, along with
their properties. Part 3 performs a systematic evaluation to
show how the CAN XL error detection mechanisms master
to detect all known error types up to a given extent.

CAN XL error detection mechanisms

In CAN communication, all nodes in a network check the
validity of each frame, including the transmitter of the cur-
rent frame. The checks are based on a combination of
several protocol mechanisms for error detection. They are
described in the following. Figure 1 shows the current ver-
sion of the CAN XL frame format. The bits used to imple-
ment additional or updated error detection mechanisms
(compared to CAN FD) are shaded.

Bit monitoring

Bit monitoring means that a node that transmits a bit
also monitors the bit values on the CAN network. If the
transmitted and received (monitored) bit values differ, the
reaction of the node depends on the bit position in the
frame. As example, if the transmitting node transmitted a
1 and received a 0 in the data field, it regards this as a bit
error. However, if the same happens in the arbitration field,
it regards this as arbitration lost.

Figure 1: CAN XL frame format (Source: Bosch)

Pr
ot

oc
ol

A detailed explanation of the bit monitoring in
CAN FD can be found in [10]. If error signaling
(via error frames) is enabled in CAN XL, bit
monitoring is nearly equal to that in CAN FD. For
the case that error signaling is disabled, bit
monitoring is not yet fully specified in the current
CiA 610-1 draft.

Frame format check

Most parts of a CAN frame (identifier, control, or data bits)
are variable or are calculated from the variable bits (CRC
sequence), but some bits (delimiters, end of frame) have a
fixed format (see figure 1). The bit values of these bits are
marked in the figure with a bold line. A receiver detects a
form error when it samples a fixed format bit with the wrong
value.

A special case is the reserved bit following the
XLF bit in CAN XL frames. The reserved bit is expected
to be dominant. In current applications, a form error is
detected when this bit is sampled as recessive. For future
applications, this bit may be used to distinguish between
the CAN XL frame format and another – not yet defined
– new frame format. When this alternative is selected (by
software configuration) and if then this bit is sampled as
recessive, the receiver enters a protocol exception state
until the network is idle again. This allows the introduction
of future new frame formats that are tolerated by existing
CAN XL implementations.

A node transmitting a CAN XL frame sends the FDF
DQG�;/)�ELWV�DV�UHFHVVLYH��ORJLFDO�¶�·���7KHVH�ELWV�DUH�SDUW�
of the arbitration field, which is different compared to CAN
FD. This means, if the transmitting node samples one of
these bits as dominant, it loses arbitration and becomes
a receiver.

In CAN XL, beside the bit-rate, also the mode
of the transceiver can be switched. In the error free
case, the CAN XL protocol controller signals the mode
switch to the transceiver during the bits AL1 and AH1. The
signaling of the mode switch to the transceiver, as well as
the mode switch of the transceiver may have side effects
on the RXD input signal of the protocol controller. Due to
this, a CAN XL node does not perform a format check at
the fixed format bits (bold lines mark bit value) AL1 and
AH1.

Format check pattern (FCP)

The FCP field contains only fixed format bits and is
used by a receiver for two purposes. The first purpose
is that it provides a synchronization edge before the
receiver switches from the data phase to the arbitration
phase.

The second purpose is that a receiver can
check with help of the FPC field if its frame decoding
is aligned with the actual transmitted bit position.
Disturbed synchronization edges may lead to so called
bit insertions and bit drops in the receiver. A receiver

https://www.lipowsky.com/ad/cannewsletter

6 CAN Newsletter 2/2020

can detect, with help of the FPC field, a misalignment
of 3 bit in both directions.

CRC concept

In general, the transmitter and the receivers of a frame cal-
culate the CRC (cyclic redundancy check) sequence. After
reception of the CRC sequence, each receiver performs a
CRC check, to judge if it received the frame correctly or
not.

)RU� WKH� &5&·V� HUURU� GHWHFWLRQ� FDSDELOLW\� WR� VXFFHHG�
with a very high probability the following two requirements
have to be fulfilled:

 X RQ1: Transmitter and receiver of the frame calculate the
CRC sequence based on the equal number bits.

 X RQ2: The receiver checks the CRC sequence at the
right position inside the transmitted frame.

To fulfill RQ1, the CAN XL frame format uses fixed
stuff bits in nearly the whole frame. Dynamic stuff bits are
only used in the first bits of the header, to be compatible to
CAN FD. A bit insertion or drop error at a dynamic stuff
condition changes the number of bits fed into the CRC. As
the error just adds or removes a dynamic stuff bit, the format
checks described up to now cannot detect that error. With
fixed stuff bits, the frame has a defined length in bits and
the receiver can feed the exact number of bits into the
CRC calculation.

To fulfill RQ2, we need to make sure that a transmission
error cannot change easily the position, where the receiver
expects the CRC. For example, if the DLC (data length code)
is falsified, the receiver checks the CRC at a wrong position.
To solve this, CAN XL uses, like Flexray, a header CRC, and
a frame CRC. The header CRC safeguards a header of well-
known length. If a receiver saw a valid header CRC, it is very
likely that the DLC is correct. With the correct DLC, the data
field length is also well known.

Scope of the frame CRC

The frame CRC is calculated over the header and the data
field (see figure 1), which is similarly done in Flexray. The
author in [9] describes in detail, which bits are included and
which are excluded from CRC calculation. This “double
checking” of the header is done, because on the one side
the frame CRC performance is practically not weakened by
safeguarding these few additional header bits. On the other
side, “double checking” increases the probability to detect
transmission errors in the header, which were not detected
by the header CRC.

Dynamic stuff bits

If the dynamic stuff bits are not included into a CRC calcu-
lation (like in Classical CAN), an undetectable error can be
caused by two bit flips, if one bit flip adds and the other re-
moves a dynamic stuff condition. This case is described in
[4]. If the dynamic stuff bits are included into the CRC cal-
culation (like in CAN FD), the CRC calculation may be vul-
nerable to bit insertions and bit drops at dynamic stuff con-
ditions [10]. CAN XL includes the dynamic stuff bits into the
header CRC calculation, but excludes them from the frame

CRC calculation. This enables detection of both aforemen-
tioned error cases.

In [9] the author assesses the performance of the
CAN XL CRC polynomials and compares the results with
the CRC polynomials used in Flexray and Ethernet. Both
CAN XL CRC polynomials guarantee at least a Hamming
distance (HD) of 6, up to the largest CAN XL frame length.
This means that at least 5 bit errors can be detected. Beside
this, both CRCs are able to detect any odd number of bit
errors. Regarding burst errors, the header CRC can detect
one burst error of up to 13 bit length, and the frame CRC of
up to 32 bit length.

Acknowledgement

Transmitters expect to get an active acknowledgement for
their frames, which is a dominant bit in the ACK (acknowl-
edgement) slot. When a transmitter does not sample a dom-
inant bit during ACK slot, it regards this as an ACK error. The
transmitter considers a frame that does not get an acknowl-
edgement as invalid and retransmits it (if retransmission is
not intentionally disabled).

Stuff rule check

The bits of a CAN frame are coded by the method of bit
stuffing. CAN uses as line coding Non-Return-to-Zero (NZR)
which has no guaranteed edges. The purpose of stuff bits
is to ensure that there are enough edges in the bit stream
for resynchro-nization of the receivers. Receivers check the
stuff rule and detect a stuff error if the stuff bit has not the
expected value.

Before the FDF bit, a dynamic stuffing rule is applied.
That means, the transmitter inserts, after each sequence of
five consecutive equal bits, one bit of inverse value, called
a dynamic stuff bit.

In the data phase, starting at DL1 bit up to the last bit
of FCRC, a fixed stuffing rule is applied. That means, the
transmitter inserts, after S 1 consecutive bits a fixed stuff bit.
The fixed stuff bit has the inverse value of its preceding bit.
This means every Sth bit is a fixed stuff bit. Currently S=15,
but this value may be decreased in the final specification,
depending on the results of the phase margin calculations.

Dynamic stuff count check

For compatibility reasons with CAN FD, the CAN XL frame
header uses dynamic bit stuffing in the header before the
FDF bit. To satisfy requirement RQ1 from chapter 2.4, we
need to make sure that transmitter and receiver of a frame
see the same amount of dynamic stuff bits. CAN FD solved
this requirement by adding the field SBC (stuff bit count)
which contains the number of dynamic stuff bits in the frame
modulo 8.

CAN XL also uses this this solution and has therefore
an SBC field in the header of the frame. It is located before
the header CRC, because it is used to check the validity of
the header. The number of dynamic stuff bits in a CAN XL
frame is in the range 0 to 3. Therefore, the SBC field in the
CAN XL frame has 3 bits, the first 2 bits contain informa-
tion on the number of dynamic stuff bits in the arbitration

Pr
ot

oc
ol

field and the 3rd bit is a parity bit. The receiver detects a
header CRC error if the SBC does not match to the num-
ber of received dynamic stuff bits, or if the SBC parity does
not match.

Error signaling

CAN XL allows to enable or to disable error signaling.
The software can enable and disable error signaling with
a configuration bit in the CAN XL implementation. In case
the user disables error signaling, the respective CAN XL
node does not transmit error frames. In case the
user enables error signaling, the error signaling is
done with help of error frames, which is identical to
the error signaling in CAN FD, which is described
in [10]. Error signaling with error frames disturbs the
current frame and thereby converts local errors into
global errors in order to ensure data consistency in the
network.

Improved error detection in CAN XL

This chapter highlights the five improvements in the CAN
XL error detection compared to CAN FD.
1. Header CRC: The newly introduced header CRC

allows checking the validity of the header, which
includes the DLC value. This allows fulfilling RQ2
and by this strengthens the CRC check.

2. Frame CRC: CAN XL uses a 32-bit frame
CRC with a respective CRC generator polynomial
to keep the Hamming distance at 6 (HD6)
despite the long data field. The frame CRC polynomial
was chosen carefully and it outperforms the
polynomials of Ethernet and Flexray according
to [9].

3. Fixed stuff bits: CAN XL uses fixed stuff bits in the
data phase of the frame (short bits). This allows
fulfilling RQ1 and by this strengthens the CRC
check.

4. Frame CRC safeguards the header: The frame
CRC also safeguards the header, which means a
“double checking” for the header. To do this
effectively, it excludes the dynamic stuff bits. The
reason for that is given further in the article and can
be summarized as follows: If the CRC calculation
does not include dynamic stuff bits, it is vulnerable
to a special error case known from Classical
CAN [4]. If it includes dynamic stuff bits, it is
vulnerable to another error case [10]. The header CRC
safeguards the header including dynamic stuff bits
and the frame CRC safeguards the header excluding
dynamic stuff bits. This enables detection of both
special error cases.

5. FCP (format check pattern): The format check
pattern is a new field (see chapter 2.3). The
receiver checks via FCP if it is aligned to the

��(FRQRPLFDO�VROXWLRQV�IRU�VHULHV�DSSOLFDWLRQV
��2SWLPL]HG�IRU�LQGXVWULDO�DSSOLFDWLRQV
��6ROXWLRQV�IRU�VWDWLRQDU\�DQG�PRELOH�XVH
��6RIWZDUH�VXSSRUW�IRU�EXV�DQDO\VLV��
��PHDVXUHPHQW�DQG�FRQWURO

Sonnenhang 3
D-85304 Ilmmünster
Tel.: +49-8441-49 02 60
Fax: +49-8441-8 18 60
www.ems-wuensche.com

CAN and CAN-FD Products
for your requirements

(WKHUQHW�&$1�
*DWHZD\�

&$1�)'�*DWHZD\� (PEHGGHG�
86%�&$1�,QWHUIDFH�

http://www.ems-wuensche.com

8 CAN Newsletter 2/2020

transmitted bit position. A receiver can detect, with
help of the FPC, a misalignment of 3 bit in both
directions.

Error types

This chapter gives an overview of the existing error types.
Details to these error types are described in [10].

Bit error or bit flip means that a CAN node samples
a bit with the inverse (flipped) value compared to the
transmitted bit value. Figure 2 shows an example for such
a bit error at bit 3.

Bit drop or bit insertion means that a receiving node
drops a bit from or inserts a bit into the bit sequence. This
is caused by a disturbed RXD signal and can occur only in
receiving nodes.

In order to cause a bit drop or insertion, the following
needs to happen: A disturbance (e.g. EM radiation)
influences the CAN physical layer. As consequence,
additional or shifted falling edges appear in the RXD signal.
The receiving node resynchronizes, based on these faulty
edges. This resynchronization may increase the phase
error ([6], [2]) between transmitting and receiving node.
When the absolute value of the phase error is above a
critical level, the receiving node drops a bit from or inserts
a bit into the bit sequence.

Figure 3 shows an example for a bit drop. Here a
resynchronization on a falsified edge causes the receiver
to drop one bit. The receiver samples the transmitted bit
VHTXHQFH�´������Lµ�DV�´������µ��¶L
�VWDQGV�IRU�D�G\QDPLF�
stuff bit).

Important properties of bit drops and bit insertions
are [10]:

 X They can theoretically happen at any position in the
frame. It is not limited to dynamic stuff conditions.

 X This error type requires many pre-requirements: e.g.
large clock tolerance between sender and receiver,
disturbance needs to hit one or more dedicated edges,
etc.

 X Drop and insertion can practically not happen in the
same frame. However, several bit drops or several bit
insertions may happen in the same frame.

Figure 3: Bit drop example (Source: Bosch)

Figure 2: Bit error example (Source: Bosch)

 X Since many factors have to come together, a bit drop or
insertion is much more difficult to cause, compared to a
bit error. Therefore, one bit drop or insertion should be
considered from the likelihood point of view as a “multi
bit error”.

Several bit errors that are locally close to each
other are called a burst error. The burst length (in bit) is
the distance from the first to the last bit error. We
distinguish here two types of burst errors. Type 1 is where
all bits in the burst are forced to the same value, e.g.
by a glitch. Figure 4 shows an example. We consider
this a realistic type of burst error on the CAN physical layer.
The second type of burst error is type 2, where several
bits are flipped, but not necessarily all. Figure 5 shows
an example.

We assume this type of burst error is very unlikely to
be caused by glitches.

However, this type of burst error can be caused by two
errors, where the first error leads to a misalignment of the
receiver and the second error reverts the misalignment. As
long as the receiver is misaligned, it sees all transmitted
bits shifted by e.g. 1 bit. This can be achieved by two
bit errors, where the one adds a dynamic stuff condition
and the other bit error removes a dynamic stuff
condition [4]. Consider that the CAN XL frame uses
dynamic bit stuffing only at the beginning of the frame.
The header CRC can detect this error easily, as it does
include dynamic stuff into the CRC calculation – this
means from header CRC point of view, there is no
misalignment and consequently the two bit errors cause
no burst error.

Another way to cause such a temporal misalignment
of the receiver is a bit drop and a bit insertion in the same
frame [10], which could theoretically occur also in the
CAN XL data field [10]. However, one bit insertion and one
bit drop, both in the same frame, are assumed practically
impossible to occur [10].

Table 1 gives an overview to the error types known
in CAN. The table also shows how an external cause
(like a glitch on the bus lines) or an internal cause (like
wrong system design) can create these errors. Further, it
shows which error detection mechanism can detect the
error.

Figure 4: Burst error – all bits forced to one value (Source:
Bosch)

Figure 5: Burst error – due to several bit errors (Source:
Bosch)

Pr
ot

oc
ol

Evaluation: burst error detection

We introduced two burst error types. As described, burst
errors of type 2 (several bits are flipped, but no necessari-
ly all) can be caused by several circumstances. Based on
the arguments we mentioned, we conclude that this type
2 burst error is practically extremely unlikely to occur and
therefore can be neglected.

Burst error type 1 (all bits in the burst are forced to
the same value, e.g. by a glitch) is considered as very real-
istic. The remainder of this chapter evaluates if and how
the error detection mechanisms can detect such a burst
error.

Since CAN XL can be used at different bit-rates, the
same glitch on the bus lines can cause very different error
scenarios for a receiver. Figure 6 visualizes the impact of
a 2 us glitch. At 500 kbit/s this leads to one bit error, while
at 2 Mbit/s it leads to a burst error of 4 bit and at 8 Mbit/s it
leads already to a burst error of 16 bit.

The diagram in figure 7 shows the relation between
glitch length and burst length in bits. Two glitch lengths
are shown: 2 us and 5 us. These glitches translate to a
burst duration of the same value. The actual glitch length
that may occur on a specific CAN network depends on the
environment around the CAN network. The authors in [7]
observed in a very aggressive environment an average
burst duration of 5 us. For example, at 5 Mbit/s a 5 us glitch
causes a burst length of 25 bit.

Figure 6: Errors caused by a 2 us glitch at different bit rates
(Source: Bosch)

Figure 7 : Error detection mechanisms versus burst errors
(Source: Bosch)

https://esd.eu/en/content/can-canopen-devicenet

10 CAN Newsletter 2/2020

Table 1: Overview of error types in CAN

Figure 7 also shows the main CAN XL error detection
mechanisms that are capable detecting burst errors.

 X Stuff rule check: The focus is here on the data phase
where each Sth bit is a fixed stuff bit. Figure 7 assumes
S=10. The arrow in the figure shows, that this check
can detect any burst error with a length larger than
S bit. Shorter burst errors may also be detected, but
only if they hit a stuff bit. With S=15 the effectiveness
decreases slightly for short burst lengths.

 X Frame CRC: The frame can detect one burst error with
a length of up to 32 bit.

 X Header CRC: The header can detect one burst error
with a length of up to 13 bit.

We conclude that both, the header and frame CRC,
can detect one short burst error and the stuff rule check
can detect long burst errors. In sum, these mechanisms
can detect all burst errors.

Evaluation: detection of bit errors and bit
drops/insertions

This chapter focuses on the two remaining error types: “bit
errors” and “bit drops/ insertions”. It evaluates systemati-
cally whether they can be detected by CAN XL. The evalu-
ation is limited to 5 bit errors (corresponds HD6) and 2 bit
insertions/drops (corresponds to an equivalent of roughly
>4 bit errors).

To simplify the description, the CAN XL frame is
virtually partitioned into four parts. The evaluation in
table 2 is partitioned accordingly. In each part, both error
types are listed. For each error type, the relevant number
of occurrences of this error type are listed. Additionally,
special error cases generated by these two error types at
dynamic stuff bits are also listed. Consequently, each row
of the table corresponds to one error case. For each error
case, the table contains information about the misalignment
of the receiver and the way in which the receiver detects
the error.

>�@��)��+DUWZLFK$1&ࡐ���ZLWK�)OH[LEOH�'DWD�5DWH�´�
in Proceedings of the 13th international CAN
Conference, Hambach Castle, Germany, 2012.

[2] ISO 011898-1:2015, Road vehicles - Controller
area network (CAN) - Part 1: Data link layer and
physical signaling, 2015.

[3] F. Hartwich, “Introducing CAN XL into
CAN Networks” in Proceedings of the 17th
international CAN Conference, Baden Baden,
Germany, 2020.

[4] J. Unruh, H. J. Mathony und K. H. Kaiser,
�UURU�'HWHFWLRQ�$QDO\VLV�RI�$XWRPRWLYH)ࡐ
Communication Protocols,“ in SAE Int.
Congress, No. 900699, Detroit, 1990.

[5] J. Charzinski, “Performance of the Error
Detection Mechanisms in CAN,” in Proceedings
of the 1st International CAN Conference, 1994.

>�@��$��0XWWHU5ࡐ��REXVWQHVV�RI�D�&$1�)'�%XV�
System - About Oscillator Tolerance and
Edge Deviations,“ in Proceedings of the 14th
international CAN Conference, Paris, France,
2013.

[7] J. Ferreira, et al., “An Experiment to Assess
Bit Error Rate in CAN”, in Proceedings of 3rd
International Workshop of Real-Time Networks,
2004

[8] N. Navet and Y.-Q. Song, “Performance and
Fault tolerance of Real-Time Applications
Distributed over CAN”, in Proceedings of the
International CAN Conference, 1997.

[9] C. Senger, “CRC Error Detection for CAN XL”
in Proceedings of the 17th international CAN
Conference, Baden Baden, Germany, 2020.

[10] A. Mutter and F. Hartwich, “Advantages of CAN
FD error detection mechanisms compared
to classical CAN,” in Proceed-ings of The
international CAN Conference, Vienna, Austria,
2015.

References

Error type External
cause: EMI

Internal cause How to detect the error? Literature

Bit error
�ELW�ÁLS�

Glitch length:
ʜ�RQH�ELW�OHQJWK

Bit asymmetry is too
large

o CRC check
o Format checks
 (limited)

Different bit error rates
(BER) mentioned in:
[4], [5], [7], [8]

Bit insertion
or bit drop

Glitch length:
< one bit length

CAN clock tolerance
is too large

o Format checks, FCP
o Dynamic stuff bit
 count (SBC)

First described in [10]

Burst error Glitch length:
> one bit length

temporary misalign-
ment of receiver to
transmitted bit stream

o Format checks
o CRC check (up to a
 limited burst length

[7] mentions an average
burst error length of 5 us;
[8] is less explicit

Pr
ot

oc
ol

12 CAN Newsletter 2/2020

Author

Dr. Arthur Mutter
Robert Bosch
info@de.bosch.com
www.bosch.com

Table 2: Systematic overview of error cases

Summary and conclusion

CAN XL has five major improvements regarding error
detection, compared to CAN FD. These are (1) header
CRC, (2) 32 bit frame CRC, (3) fixed stuff bits in the data
phase, (4) frame CRC additionally safeguards header, (5)
format check pattern.

Three major error types are known in CAN: (1) Bit
error, (2) bit drops/insertions, and (3) burst errors. These
error types are introduced in detail.

The article shows how the error detection
mechanisms can detect a burst error, where all bits in
the burst are forced to the same value, independent of its
length. Further, it shows systematically how bit errors and
bit drops/insertions can be detected up to a given extent.
We conclude that the error detection mechanisms in CAN
XL can detect all known error types to a sufficient extent.
This work can serve as basis for a review of the CAN XL
error detection capabilities, which is planned by the SIG
CAN XL. W

Case Receiver
misalignment

Error detected mainly by

Frame part 1 [SOF to IDE]
Bit drop or insertion @ dynamic stuff condition
 1 bit drop or insertion no SBC (dynamic stuff bit count changes)
 2 bit drops or insertions no SBC (dynamic stuff bit count changes)
 1 bit drop + 1 bit insertion 1 bit temporary

for CRC
Practically not possible; header CRC

Bit drop or insertion @ no dynamic stuff condition
 1 bit drops or insertion 1 bit Format check: IDE = ‘1’ or FDF = ‘0’
 2 bit drops or insertions 2 bit Format check: IDE = ‘1’ or XLF = ‘0’
 1 bit drop + 1 bit insertion 1 bit temporary Practically not possible; header CRC

Bit error @ dynamic stuff condition � adds or removes stuff condition
 1 bit error (add/remove) 1 bit Format check: FDF = ‘0’ or IDE = ‘1’
 2 bit errors (add/remove) 2 bit Format check: XLF = ‘0’ or IDE = ‘1’
 3 bit errors (add/remove) 3 bit AL1 = ‘1’ � transceiver will be not switched; or format check:

FDF = ‘0’
 1 bit error (add) +
 1 bit error (remove)

not for CRC Header CRC

Bit error @ no dynamic stuff condition
 1 to 5 bit errors no Header CRC

Frame part 2 [FDF to AL1]
Bit drop or insertion yes Format Check
Bit error no Format Check

Frame part 3 [DH1 to HCRC]
Bit drop or Insertion
 1 bit drop or insertion 1 bit If DLC wrong � all together, else FCP
 2 bit drops or insertions 2 bit If DLC wrong � all together, else FCP
 1 bit drop + 1 bit insertion 1 bit temporary Practically not possible; header CRC

Bit error
 1 to 5 bit errors no Header CRC

Frame part 4 [Data field and CRC field]
Bit drop or insertion
 1 bit drop or insertion 1 bit FCP
 2 bit drops or insertions 2 bit FCP
 3 bit drops or insertions 3 bit FCP
 1 bit drop + 1 bit insertion 1 bit temporary Practically not possible

Bit error
 1 to 5 bit errors no Frame CRC

Pr
ot

oc
ol

mailto:info@de.bosch.com
http://www.bosch.com

14 CAN Newsletter 2/2020

These properties include achieving Hamming distance
6 for the full range of possible message lengths. At

the beginning of the article, a self-contained recap of CRC
codes is given.

A new version of the CAN protocol is currently under
development: CAN XL. With net data rates up to 10 Mbit/s
and beyond, it is designed to bridge the gap between CAN
FD and 100Base-T1 Ethernet [1]. Among the design goals
for CAN XL are full interoperability with CAN FD as well as
large payload length (up to 2 048 byte) in order to enable the
use of higher layer protocols such as IP (Internet Protocol)
and even encapsulation of complete Ethernet frames [2].

As in any communications system, data transmission
in CAN XL is not perfect and transmission errors are inevi-
table. That is, a transmitted logical zero is detected at the
receiver as a logical one or vice versa — a so-called bit
error or bit flip. Due to certain physical perturbances in an
actual system, bit errors tend to occur in temporally con-
fined groups: so-called burst errors.

Based on elaborate mechanisms that exploit the
CAN FD/CAN XL frame structure, certain transmission
errors can be detected [3], [4] and corresponding mea-
sures can be taken. Frame structure-based error detection
alone is not able to provide the required state of the art error
GHWHFWLRQ� SHUIRUPDQFH� IRU� WRGD\·V� DSSOLFDWLRQV�� QDPHO\�
probability of undetected bit error below 10-20 and guaran-
tee to detect burst errors of a certain length. Thus, in order
to provide the required error detection performance, CRC
(cyclic redundancy check) codes are employed (Note: that
the term “cyclic” at this point is misleading, as many CRC
codes used these days do not actually fulfill the defini-
tion of a cyclic code (cf. textbooks on error control coding
such as [5]). Today, this naming is mainly used for histori-
cal reasons).

Competing standards such as Flexray and Ethernet
also use CRC codes for error detection and it is our goal to
provide at least the same or better error detection perfor-
mance for CAN XL. This can be accomplished by choos-
ing particular CRC codes, which is the main contribution of
this article.

Choosing a particular CRC code is based on cer-
tain performance criteria such as the probability of unde-
tected error and the maximal length of a burst error that
can be detected with certainty. These in turn depend on the
messages that need to be protected and thus on the CAN
XL frame structure. The choice is particularly challenging
in cases where the messages have variable lengths. For
that reason, it was decided early on in the design process of

CRC generator polynomials for detection of transmission errors in headers and
frames of the upcoming CAN XL standard are proposed. Properties, which
are chosen to provide error detection performance (compared to competing
standards) in the CAN XL scenario, are described.

CRC error detection for CAN XL

CAN XL to protect the comparatively short and fixed-length
header by a so-called header CRC and the whole frame
(whose length may vary from several to more than 2 000 byte)
by a separate CRC, the so-called frame CRC.

CRC codes

We restrict ourselves to codes over the binary field ,
i.e., codes over the set {0,1} with operators + (XOR)
and · (AND). We denote the set of polynomials of indetermi-
nate over as . For some from

 we denote the largest where ,
the degree of .

In general, the purpose of codes is to cope with trans-
mission errors. The main idea is to add redundancy to a mes-
sage and transmit the resulting codeword. At the receiver,
the redundancy can then be used to recover the transmitted
codeword, even if it got corrupted during transmission. This
is called error correction. A much simpler task is to use the
redundancy in order to determine whether the transmission
was error-free or not. This is called error detection.

The message could, for example, be a polynomial
 of degree at most (having at most nonzero

coefficients) from . Such a message of message length
 can be augmented by redundant coefficients that are

calculated as a function of the message. The process of aug-
menting message by redundancy is called encoding, is
called the CRC length, the code length. The
result of encoding is referred to as a codeword. Encoding is
called systematic if in any codeword, message and redun-
dancy can be clearly separated (such as in the codeword

consisting of message in the most significant
coefficients and redundancy in the least significant
coefficients). Systematic encoders are preferred in practice
due to their obvious implementation advantages.

One way of encoding messages , ,
into codewords , , is to multiply
them with a fixed generator polynomial

of degree from .
 (1)

Pr
ot

oc
ol

The set of all possible codewords obtainable in this way is
called the CRC code , where we maintain the message
length as an index for purposes. This canonical way of
encoding (multiplication of messages with the generator
polynomial) is not systematic, message and redundancy are
intertwined in the resulting codewords and cannot be clearly
separated. Due to its definition in (1) one could also refer to

 as a polynomial code.
Systematic encoding can be achieved as follows.

Instead of multiplying messages with the generator
polynomial, the mapping

is performed. Using this form of encoding, the redundan-
cy is the polynomial remain-der of the division ,
i.e., the remainder of polynomial long division (over
) applied to message and generator polynomial. It is easy
to see that the codewords obtained this way can be writ-
ten as , and thus

. That is, systematic encoding leads to the
same code as canonical encoding, only the mapping
from messages to codewords is different.

The effect of systematic encoding as presented before
can be described in words: codewords are polynomials of
degree at most , where the message is shifted
into the most significant coefficients
and the redundancy is written into the least significant
coefficients .
The main reason for the popularity of polynomial codes
as described above is the fact that the polynomial
remainder of can be calculated using a simple
linear feedback shift register. In general, the register in
Figure 1 calculates the polynomial remainder of

, and stores it (after clock
cycles) in the memory elements .

It is clear that the register can be used to calculate
 as in (2) by setting and

. Note that is fed into the regis-
ter starting with its most significant coefficient and
that its memory elements must be reset to some fixed
binary vector (called the initialization vector) be-
forehand. After is fed into the register it holds

.
Besides calculating as required for

systematic encoding, the same register can also
be used to determine whether a given polynomial

, is a codeword. In case it is
a codeword, it has to be a polynomial multiple of the generator
polynomial as stated in (1). But this implies that
divides and thus has
to hold if the register is fed with
and . Otherwise (if
at least one out of the is nonzero after clock
cycles), cannot be a codeword. It is important to
note that the memory elements must be reset to the
same initialization vector as used for encoding in the
previous paragraph before the are
fed into the register. We stress that in case is
indeed a codeword, we have ,

, where

http://www.all4can.com

16 CAN Newsletter 2/2020

and are the coefficients of message and
redundancy r(x), respectively.

In practice, CRC codes are used as follows: First,
generator polynomial and initialization vector are
chosen as system parameters and made known to both
transmitter and receiver. Each message is encoded
into a codeword at the transmitter (systematically as
in (2) using the linear feedback shift register from figure 1
in order to calculate the redundancy .

The codeword is transmitted over a communications
channel where it may be exposed to bit and burst errors.
As a result, the received word at the receiver may
not be identical to . The receiver now uses the
register (configured with and the initialization vector)
in order to check whether is a codeword or not. If it is
not a codeword then a transmission error is detected and
appropriate measures are taken.

If it actually is a codeword then two cases are possible:
Either coincides with , which means errorfree
transmission. Otherwise, if it does not coincide with ,
the channel transformed into another codeword
from . The receiver has no way of distinguishing
between the two cases and thus the latter case
corresponds to an undetected error. Since the probability
of having undetected errors depends on the actual
generator polynomial, choosing generator polynomials
that result in low undetected error rate is of utmost
importance.

Properties of CRC codes

As we will see in the following, the undetected error rate
is mainly determined by a code parameter referred to as
minimum Hamming distance or, in the context of CRC
codes, simply Hamming distance . It states the min-
imum number of coefficients, in which any two codewords

, differ.
In our setting (since the considered polynomial

codes are linear), is defined by the minimum
Hamming weight of the codewords from , i.e.,

Figure 1: Linear feedback shift register for use with polynomial codes. All operators are from F_2, i.e., + denotes an XOR
operation, b_i surrounded by a circle denotes an AND operation with b_i as one of the operands (Source: Dr. Christian
Senger)

The Hamming weight of a polynomial
 is in turn defined as the number of its nonzero coef-

ficients, i.e.,
Since the CRC length M is fixed (by the choice

of generator polynomial) the code rate
approaches one as the message length grows.
Consequently, larger results in a denser packing of
the linear code space and thus (in general) in smaller
Hamming distance. Since CAN XL (both header and frame)
generates a range of message lengths we have to carry

along as an index for both and . Transmission
errors can be represented by nontrivial error polynomials

with that distort transmitted
codewords into received polynomials

In order to cause an undetected error, the channel has
to cause at least nonzero coefficients in , i.e., it
has to cause bit errors. It is not possible
to take the transmitted to a different codeword with a
smaller number of bit errors and thus transmission errors
with < bit errors can always be detected.
Consequently, larger Hamming distances result in smaller
undetected error rates, which is why we always aim for
large Hamming distance in the rest of the paper.

Undetected error rate

The undetected error rate states the probability that trans-
mission of a codeword results in received
word and . It can be calcu-
lated explicitly under the assumption (suggested in [6]) that
the transmission channel is a binary symmetric channel
(BSC) that flips each transmitted bit with cross-over prob-
ability . Besides this assumption, the weight distribution

 of is required. Its

Pr
ot

oc
ol

 < Easy handling
 < Integrated safety
 < Faster development

Complete portfolio:
www.br-automation.com/mobile-automation

Completely integrated
automation for
mobile machinery - X90

components , give the
number of codewords in having Hamming weight .
Despite being computationally not trivial, it is still possible
to calculate weight distributions for moderately sized poly-
nomial codes.

Under the given assumptions, the undetected error
rate of a code can be calculated as

Since we assume a BSC it is times less
likely to have compared to having

. This fraction goes to infinity as
and thus is dominated by its first term, that is,

.
As a consequence, our criterion for picking genera-

tor polynomials for the header CRC in Section V from mul-
tiple candidate polynomials with the same is going to
be small for the full range of relevant message
lengths .

Guaranteed-detectable errors

Some transmission errors can be detected with guarantee.
Take for example a code with . Any two dis-
tinct codewords differ in at least 6 coef-
ficients. That is, taking and flipping at most 5 arbitrary
coefficients cannot result in some . Or, in other
words:

This shows that, in any case, up to bit errors
can be detected with guarantee. Many transmission errors
with much larger Hamming weight can be detected as well
but this can in general not be guaranteed. An exception
(where there actually are guarantees) are burst errors of a
certain maximal length as we will see in the following.

For any transmission error ,
we define the following two notions: The trailing coefficient

 and the leading coefficient
.

The value
is referred to as the burst-length of the error. In general,
detecting errors is easier if their Hamming weight and their
burst-length are small.

If any is a codeword then (by defini-
tion) it has to be a polynomial multiple of . That is,

 for some . But this
implies

and thus

https://www.br-automation.com/en/products/mobile-automation/

18 CAN Newsletter 2/2020

As a result, cannot be a codeword if
 and consequently any

transmission error can be detected as long as its burst-
length is at most .

In order to guarantee detection of preferably long
burst errors it is instrumental to choose with
resulting in , which (with the above) guaran-
tees detection of error bursts up to burst-length .

Generator polynomials from hav-
ing the special form , where

, impose the factor on
any codeword , i.e., any code-
word can be written as with

. For any such codeword
holds because in we have 1 + 1 = 0 (XOR
operation). But the evaluation at 1 of any polynomial from

 results in 1 if its Hamming weight is odd and in 0 if
the Hamming weight is even. This lets us conclude that all
codewords from the resulting CRC code have even Ham-
ming weight and consequently a received word of odd
Hamming can never be a codeword. In other words: if the
generator polynomial has x + 1 as a factor then all
transmission errors affected by an odd number of
bit flips are detected with guarantee.

In summary we can list types of non-trivial transmis-
sion errors , that are guar-
anteed-detectable by CRC codes with certain generator
polynomials g(x):
1. In any case: is guaranteed-detectable as long as

.
2. If is guaranteed-detectable as long as it

contains a single burst error of burst-length at most .
3. If has as a factor: is guaranteed-

detectable as long as is odd.

CAN XL frame structure

CAN XL frames consist of a multitude of fields, out of which
some are protected by the header CRC (HCRC), some by
the frame CRC (FCRC), and some by both. Table I pro-
vides an overview. Here, being protected by a CRC means
being included in its message polynomials.

It can be seen in the table that besides the obvious
data field also the header fields ID, RRS, PT, DLC, SBC as
well as the HCRC redundancy are part of the FCRC mes-
sages. This approach, which provides extra protection to
the header fields at negligible cost, was decided as a result
of discussions with Dr. Arthur Mutter and Florian Hartwich,
Robert Bosch. The same approach is taken in the Flexray
standard.

Some of the fields are affected by dynamic bit stuff-
ing after each run of five identical bits, namely SOF, ID,
RRS, and IDE. The number of dynamic stuff bits is stored
in the SBC field. Note that the last dynamic stuff bit may
be added after the IDE field. Fixed stuff bits as well as any
fixed-value fields are not included in any CRC calculation.

We emphasize that the dynamic stuff bits are pro-
tected by the HCRC but not by the FCRC. The explanation
is given in the following.

Excluding dynamic stuff bits from CRC messages
(as in Classical CAN) can result in an undetectable error

caused by two bit flips if one bit flip adds and the other
removes a dynamic stuff condition. This case is described
in [7]. However, including dynamic stuff bits (as in CAN FD)
makes the CRC code vulnerable to bit insertions and bit
drops at dynamic stuff conditions as described in [3].

Therefore, it was decided to include the dynamic stuff
bits in the HCRC calculation but to exclude them from the
FCRC calculation. This enables detection of both afore-
mentioned types of errors.

Header CRC (HCRC)

As mentioned before, a dedicated header CRC is pro-
posed for CAN XL. The same approach is followed by the
Flexray standard, where fixed-length headers are protect-
ed by an M = 11 bit CRC code that achieves Hamming dis-
tance 6. The Ethernet standard does not stipulate a dedi-
cated header CRC.

The achievable undetected error rates of codes with
Hamming distance 6 are well below 10-20. For relevant
CAN XL scenarios with data rates around 10 Mbit/s this
means that less than one undetected header error per
year per billion devices can be expected. Thus, going to
larger Hamming distance seems to be over the top. Conse-
quently, the proposed generator polynomial for protecting
the CAN XL header provides Hamming distance 6.

Due to dynamic bit stuffing, HCRC message poly-
nomials consist of at least 34 and at most 37 coeffi-
cients (Table I). Thus, any HCRC candidate has to fulfill

.
It can be verified by exhaustive search that the small-

est CRC length M for which candidates fulfilling the HD
requirement can be found is . Out of all the candidates,
we propose the generator polynomial

for use in the HCRC. Our arguments are described in the
following. Note that when we talk about header in this con-
text we mean HCRC message as given by table 1 plus
HCRC parity. First, we have (as for any CRC code with
Hamming distance 6):
1. Any erroneous header that is affected by no more than

5 bit errors can be detected with guarantee.
Additionally, due to our special choice of (least
significant coefficient and factor) we have:
2. Any erroneous header that is affected a single burst error

of burst-length no more than 13 can be detected with
guarantee. In other words, any received header where
the bit flips are constrained to a set of 13 consecutive
bits is guaranteed-detectable.

3. Any erroneous header that is affected by an odd number
of bit errors can be detected with guarantee.

4. The undetected error rates
are minimal among all possible candidate generator
polynomials with properties (1) to (3).

We stress that many error patterns that do not fall
into cases (1) to (3) can also be detected, but without
guarantee.

For the convenience of the reader we state
(x) in three commonly used notations:

Pr
ot

oc
ol

19CAN Newsletter 2/2020

M ISO Normal Koopman
13 0x39E7 0x19E7 0x1CF3

In order to cope with the aforementioned vulnerability
to bit insertions and bit drops related to dynamic bit stuff-
ing the linear feedback shift register must never assume
the all-zero state in the first clock cycles when it
is fed with the message (cf. [3]). Here,
denotes the number of dynamic stuff bits that occur in,
in between or after the SOF, ID, RRS, and IDE fields.
Note that 12 bits protected by the HCRC (ID and RRS
fields) are affected by dynamic bit stuffing. The all-ze-
ro state can be avoided by choosing a particular initial-
ization vector such as the proposed initialization vector

Frame CRC (FCRC)

Standards competing with CAN XL such as Flexray and
Ethernet utilize CRC codes that achieve Hamming distance
HD = 4 for maximum-length frames. For minimum-length
frames, Hamming distance HD = 8 (Flexray) and HD = 6
(Ethernet) is achieved. The M = 24 generator polynomial
0xAEB6E5 (Koopman notation) used in Flexray achieves
HD = 8 only for ultra short payload sizes (up to 8 byte) and
goes down to HD = 6 already at a payload size of 9 byte.
On the other hand, it maintains HD = 6 almost up to the
maximal payload size of 259 byte. It is thus fair to say that
the Flexray FCRC provides HD = 6 for almost all practical
payload sizes.

The M = 32 generator polynomial 0x82608EDB (Koop-
man notation) used in Ethernet performs comparatively
bad (despite having 8 bit more redundancy): it achieves
only HD =5 for very small payload sizes and this deterio-
rates to HD = 4 already at a payload size of 372 byte.

In order to achieve comparable CRC error detection
performance as the Flexray and Ethernet polynomials, we
propose to use a generator polynomial that achieves HD
= 6 throughout the full range of possible CAN XL payload
sizes, i.e., from 1 byte to 2 048 byte. This is not possible
with the = 24 Flexray polynomial and, in fact, it is not

Table 1: Fields of the CAN XL frame that are protected by either of the two CRCs

possible with any generator polynomial with < 31. Thus,
in order to provide some safety margin, we propose to use
a generator polynomial with = 32 for the CAN XL FCRC
(same CRC length as Ethernet).

It follows that the FCRC message length varies
between 34 + 13 + 1 · 8 = 56 and 34 + 13 + 2048 · 8 = 16431 bit.
Thus, the task at hand is to find an = 32 generator
polynomial that achieves .
Ideally (in order to lower the undetected error rate by
guaranteed detection of long burst errors and any odd
number of bit errors), the polynomial should have
and it should be divisible by .

Finding such polynomials is a computationally very
demanding task. For the case = 32, it has already been
tackled in literature. Reference [8] lists the = 32 gen-
erator polynomial 0xFA567D89 (Koopman notation). The
same polynomial was already found in [9], but wrongly list-
ed as 0x1F6ACFB13 (normal notation), while it should have
been 0x1F4ACFB13 as pointed out by [8].

The Hamming distance profile of the code generated
by 0xFA567D89 is shown (among the Flexray and Ether-
net polynomials) in Figure 2, solid curve. It can be clearly
seen that the polynomial achieves HD = 8 for small pay-
load sizes.

The Hamming distance goes down to HD = 6 at mes-
sage length = 275 bit, which is maintained until the
maximal payload size. As stated, this includes most of the
header fields as well as the HCRC redundancy and thus
double-protecting these fields by the FCRC causes no
degradation in terms of Hamming distance.

We stress that 0xFA567D89 never falls below one of
the Flexray and Ethernet polynomials in the full range of
possible CAN XL payload sizes (it actually also outper-
forms the Ethernet polynomial over the full range of possi-
ble Ethernet payload sizes and also the Flexray polynomial
over almost the full range of Flexray payload sizes).

Using the code generated by 0xFA567D89 results in
the following properties of the FCRC:
1. Any erroneous frame (including all fields marked as “part

of FCRC message” in table 1) that is affected by no more
than 5 bit errors can be detected with guarantee.

Pr
ot

oc
ol

20 CAN Newsletter 2/2020

Additionally, due to the fact that 0xFA567D89 has
least significant coefficient g_0 = 1 and factor x + 1 (see
definition of g_HCRC (x) below) we have:
2. Any erroneous frame that is affected by a single burst

error of burst-length no more than 32 can be detected
with guarantee. In other words, any received header
where the bit flips are constrained to a set of 32 consec-
utive bit is guaranteed-detectable.

3. Any erroneous header that is affected by an odd num-
ber of bit errors can be detected with guarantee.

We stress once again that many error patterns that do
not fall into cases (1) to (3) can also be detected, but with-
out guarantee.

Due to its aforementioned properties we propose to
use 0xFA567D89 as the FCRC generator polynomial, that
is, we propose

For the convenience of the reader we state
in the three commonly used notations:

M ISO Normal Koopman
13 0x1F4ACFB13 0xF4ACFB13 0xF4ACFB13

The initialization vector plays only a minor role since
dynamic stuff bits are excluded from the FCRC. However,
defining an initialization vector is inevitable and we pro-
pose to use

Conclusion and outlook

We presented generator polynomials for use in the
header and frame CRCs of the current CAN XL draft and
showed that their error correction performance matches
or outperforms the CRC codes in competing standards.

Figure 2: Hamming distance profiles for the Flexray, Ethernet, and proposed CAN XL FCRC generator polynomials. Note
that the x-axis is logarithmic and given in byte and thus message length is k = 8 · x (since k is given in bit). All polynomials
are given in Koopman notation. (Source: Dr. Christian Senger)

Further improvements in the undetected error rate could
be achieved by taking the actual error patterns that occur
in CAN XL systems into consideration, which would require
a detailed characterization of those patterns for different
real-world scenarios. So far, our proposal is based on the
simplifying assumption that the CAN XL bus behaves like
a binary symmetric channel with occasional error bursts.
In order to improve the detection capabilities for burst
errors, CRC codes over larger alphabets could be taken
into consideration.

Appendix

Generator polynomials are frequently represented as
hexadecimal numbers in order to save space. One way to
do that is used in ISO 11898 [10] and works as follows:
write the coefficient vector of the polynomial with most
significant bit (MSB) first, pad it on the left with zeros to
length 4s, where , and then interpret
each block of four bits by the corresponding hexadecimal
number (again MSB left). This is called the ISO notation.
in which, for example, the generator polynomial

having coefficient vector
and , is represented by

For the first alternative notation, write the coefficient
vector with MSB first, pad it on the left with zeros to length
4s, replace the leftmost nonzero bit (i.e., g_M = 1) by a zero
and then interpret each block of four by the correspond-
ing hexadecimal number. This is called the normal nota-
tion in which, for example, g(x) as above is represented by

Pr
ot

oc
ol

Another alternative representation (popularized by
Koopman [8]) can be obtained for that fulfill the

 property (such as the polynomials proposed):
write the coefficient vector with most significant bit (MSB)
first, pad it on the left with zeros to length , de-
lete the rightmost bit (i.e.,) and then interpret each
block of four by the corresponding hexadecimal number.
This is called the Koopman notation. In Koopman notation,
g(x) as above is represented by

It is straightforward to recover g(x) from any of the
hexadecimal notations by simply reversing the respective
process. W

[1] “Standard for Ethernet - Amendment 1: Physical Layer
Specifications and Management Parameters for 100 Mb/s
Operation over a Single Balanced Twisted Pair Cable
(100BASE-T1),” ISO/IEC/IEEE 8802- 3:2017/Amd 1:2017(E), pp.
1–92, March 2018.

[2] Robert Bosch GmbH. (2019) CAN XL, Next step in CAN evolution.
[Online]. Available: https://www.bosch-semiconductors.com/ news/
t-newsdetailpage-4.html

[3] A. Mutter and F. Hartwich, “Advantages of CAN FD error detection
mechanisms compared to classical CAN,” in In Proceedings of The
international CAN Conference 2015 (iCC 2015), 2015.

[4] A. Mutter, “CAN XL error detection capabilities,” in In Proceedings
of The international CAN Conference 2020 (iCC 2020), 2020.

[5] F. MacWilliams and N. Sloane, The Theory of Error-Correcting
Codes, 2nd ed. North-Holland Publishing Company, 1978.

[6] J. Charzinski, “Performance of the Error Detection Mechanisms
in CAN,” in Proceedings of the 1st International CAN Conference,
September 1994, pp. 1/20–1/29.

[7] J. Unruh, H.-J. Mathony, and K.-H. Kaiser, “Error detection analysis
of automotive communication protocols,” SAE Transactions, vol. 99,
pp. 976–985, 1990.

[8] P. Koopman, “32-bit cyclic redundancy codes for internet
applications,” in Proceedings International Conference on
Dependable Systems and Networks, 6 2002, pp. 459–468, doi:
10.1109/DSN.2002.1028931.

[9] G. Castagnoli, S. Brauer, and M. Herrmann, “Optimization of
cyclic redundancy-check codes with 24 and 32 parity bits,” IEEE
Transactions on Communications, vol. 41, no. 6, pp. 883–892, June
1993, doi: 10.1109/26.231911.

[10] “Data link layer and physical signalling,” ISO 11898-1:2015, pp.
1–65, December 2015.

References

Author

Dr. Christian Senger
Institute of Telecommunications, University of Stuttgart
senger@inue.uni-stuttgart.de
www.inue.uni-stuttgart.de

Continuous digitization for smart vehicles
Modular on-board units with Linux – ready for condition based monitoring.
Including !ash-over-the-air and embedded diagnostic functionality.

Sontheim IoT Device Manager and IoT Analytics Manager – for a highly secure,
 comfortable and individual visualization and management of your data.

HIGH-END CONNECTIVITY AND DATA MANAGEMENT

www.s-i-e.de

TELEMATICS AND CLOUD SYSTEMS FOR IOT AND SERVICE 4.0

Telematic ECU – COMhawk® xt

Modular on-board
telematics series

Integrated
!ash-over-the-air

functionality

Embedded
diagnostics

functionality

Ready for
condition based

 monitoring

IoT Device Manager
and IoT Analytics

Manager

Multi-protocol
support (J1939,

J2534, UDS, KWP, …)

mailto:senger@inue.uni-stuttgart.de
http://www.inue.uni-stuttgart.de
https://www.sontheim-industrie-elektronik.de/en/

	Table of contents
	CAN XL error detection capabilities
	CRC error detection for CAN XL
	Facts & figures
	Covid-19 and CAN business
	Covid-19: Morepallet stackers andforklifts are needed
	Starter kit: Hardware and software
	Node-ID assignment using LSS

	ad lipowsky:
	ad ems:
	ad esd:
	ad ixxat:
	ad b&r:
	ad sontheim:

