
	
	
	
	
	
	

CONTROLLER	AREA	NETWORK	

PROTOTYPING	WITH	ARDUINO	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

COPPERHILL	TECHNOLOGIES	
	

https://copperhilltech.com

CONTROLLER	AREA	NETWORK	PROTOTYPING	WITH	ARDUINO	
by	Wilfried	Voss	
	
Published	by	
Copperhill	Technologies	Corporation	
158	Log	Plain	Road	
Greenfield,	MA	01301	
USA	
	
Copyright	©	2014	by	Copperhill	Technologies	Corporation	
	
Cover	Design	by	Copperhill	Technologies	Corporation	
	
No	part	of	this	publication	may	be	reproduced,	stored	in	a	retrieval	system	or	transmitted	
in	any	form	or	by	any	means,	electronic,	mechanical,	photocopying,	recording,	scanning	or	
otherwise,	 except	 as	 permitted	 under	 Sections	 107	 or	 108	 of	 the	 1976	 United	 States	
Copyright	Act,	without	the	prior	written	permission	of	the	Publisher.	
	
All	 trademarks	 or	 copyrights	 mentioned	 herein	 are	 the	 possession	 of	 their	 respective	
owners	and	Copperhill	Media	makes	no	claim	of	ownership	by	the	mention	of	products	that	
contain	these	marks.	
	
“Arduino”	is	a	trademark	of	the	Arduino	team.	
	
ISBN-10:	1938581164	
ISBN-13:	978-1-938581-16-8	
	
Disclaimer:	While	the	publisher	and	author	have	used	their	best	efforts	 in	preparing	this	
book,	 they	 make	 no	 representations	 or	 warranties	 with	 respect	 to	 the	 accuracy	 or	
completeness	of	the	contents	of	this	book	and	specifically	disclaim	any	implied	warranties	
or	 merchantability	 or	 fitness	 for	 a	 particular	 purpose.	 No	 warranty	 may	 be	 created	 or	
extended	 by	 sales	 representatives	 or	 written	 sales	 materials.	 The	 advice	 and	 strategies	
contained	 herein	 may	 not	 be	 suitable	 for	 your	 situation.	 You	 should	 consult	 with	 a	
professional	where	appropriate.	Neither	the	publisher	nor	author	shall	be	liable	for	any	loss	
or	profit	or	any	other	commercial	damages,	including	but	not	limited	to	special,	incidental,	
consequential,	or	other	damages.	
	
	
	

https://copperhilltech.com	

	4	

	
	
	

	 I	

From	the	Author	
	
It	seems	like	a	million	years	since	I	had	a	soldering	iron	in	my	hand	and	that	I	have	
been	engaging	 in	my	most	 favorite	programming	activity,	namely	programming	of	
embedded	systems.	 In	 the	past,	 I	did	 shy	away	 from	 the	expenses	 that	 came	with	
embedded	 programming,	 but	 with	 the	 emergence	 of	 inexpensive	 prototyping	
systems	such	as	the	Arduino	or	Raspberry	Pi	this	concern	doesn’t	exist	anymore.	
	
Add	to	this	a	virtually	non-existing	learning	curve.	With	my	Arduino	Uno	I	ordered	a	
book	 explaining	 Arduino	 Sketches,	 and	 I	 read	 it	 for	 about	 30	 minutes	 to	 scan	
through	the	most	important	information.	Then	it	took	maybe	another	30	minutes	to	
get	my	first	application	running.		
	
I	know,	I	am	joining	the	enormous	club	of	Arduino	users	who	made	and	expressed	
the	same	experience,	but	that	doesn’t	change	the	fact	that	the	Arduino	is	the	perfect	
environment	for	prototyping	of	embedded	computer	systems.	
	
Naturally,	with	my	knowledge	of	all	kinds	of	Controller	Area	Network	topics,	I	was	
eager	 to	 convert	 that	 knowledge	 into	 the	 real	 thing,	 namely	 a	 working	 CAN	
application.	That	CAN	application	will	be	the	basics	of	an	USB-to-CAN	Gateway	with	
CAN	 network	monitoring	 and	 diagnostic	 features	 as	 explained	 in	 the	 chapters	 to	
follow.	From	here	on,	with	the	knowledge	gained	through	this	project,	I	encourage	
you	 to	 let	your	mind	 flow	and	extend	 the	application.	The	possibilities	are	plenty.	
Enjoy!	
	
However,	 before	we	 get	 there	 let	me	 explain	 the	 approach	of	writing	 this	 book:	 I	
could	have	engaged	into	writing	many	pages	about	Arduino	basics,	what	it	is,	where	
it	comes	from,	how	to	use	it,	etc.,	for	the	mere	purpose	of	adding	more	pages	and,	as	
a	result,	being	able	to	charge	more	money	for	my	book.	However,	there	are	myriads	
of	books	on	Arduino,	Arduino	Sketches,	and	Arduino	Shields	available	in	the	market,	
and	I	won’t	waste	your	money	or	time.	However,	references	to	Arduino	basics	may	
appear	but	only	in	passing.	
	
That	being	said,	 this	book	assumes	some	knowledge	of	the	Arduino	hardware	and	
its	programming.		
	
It	also	assumes	some	basic	knowledge	of	Controller	Area	Network	(CAN).	I	will	refer	
briefly	to	some	aspects	of	CAN,	but	these	are	the	mere	basics	of	the	actual	protocol,	
just	enough	to	understand	the	concept.	In	all	truth,	there	is	no	need	to	understand	
all	details	of	the	protocol,	since	100%	of	the	protocol	is	implemented	on	a	chip,	the	
CAN	controller.	All	we	need	to	do	 in	 this	book	 is	 to	receive,	 transmit,	and	process	
data.	The	rest	is	up	to	your	fantasy.	

	II	

	
Nevertheless,	 the	 CAN	 protocol	 utilizes	 some	 ingenious	 features,	 and	 if	 you	 are	
interested	 in	 learning	 more,	 please	 refer	 to	 A	Comprehensible	Guide	 to	Controller	
Area	Network	as	mentioned	in	the	literature	appendix	of	this	book.	
	
Last,	 but	 not	 least,	 let	 me	 lose	 some	 words	 on	 my	 programming	 style	 that	 is	
definitely	different	than	what	you	usually	see.	
	
I	put	great	emphasis	not	only	on	readability	of	code;	I	also	have	debugging	in	mind	
when	I	write	code.	I	am	using	a	slightly	modified	version	of	the	Hungarian	Notation,	
meaning	looking	at	a	variable’s	or	function’s	name	provides	you	some	information	
about	 its	 nature.	 For	 instance,	 the	 prefix	 n	 indicates	 an	 integer	 variable	 (e.g.	
nVariable).	 In	addition,	being	familiar	with	a	number	of	programming	languages,	 I	
attempt	to	keep	the	best	of	all	worlds.	For	instance,	I	add	comments	behind	almost	
every	bracket	 to	 indicate	 information	such	as	end	if	or	end	while,	etc.,	which	helps	
identify	program	blocks.		This	may	be	helpful	for	Visual	Basic	programmers	who	are	
new	to	C/C++	programming.	
	
Like	 under	 Visual	 Basic,	 my	 functions/routines	 start	 with	 either	 Sub	 (the	 return	
code	is	void)	or	xFct	(where	x	 indicates	the	type	of	the	return	code,	for	instance,	n	
for	integer).	
	
About	the	Author	
	
I	 am	 the	 author	 of	 the	 “Comprehensible	 Guide”	 series	 of	 technical	 literature	
covering	topics	like	Controller	Area	Network	(CAN),	SAE	J1939,	Industrial	Ethernet,	
and	Servo	Motor	Sizing.	I	have	worked	in	the	CAN	industry	since	1997	and	before	
that	was	a	motion	control	engineer	 in	the	paper	manufacturing	 industry.		 I	have	a	
master’s	 degree	 in	 electrical	 engineering	 from	 the	 University	 of	 Wuppertal	 in	
Germany.	
	
During	the	past	years,	 I	have	conducted	numerous	seminars	on	industrial	 fieldbus	
systems	 such	 as	 CAN,	 CANopen,	 SAE	 J1939,	 Industrial	 Ethernet,	 and	more	 during	
various	 Real	 Time	 Embedded	 And	 Computing	 Conferences	 (RTECC),	 ISA	
(Instrumentation,	Systems,	and	Automation	Society)	conferences	and	various	other	
events	all	over	the	United	States	and	Canada.	
	
I	had	the	opportunity	of	traveling	the	world	extensively,	but	settled	in	New	England	
in	1989.		I	presently	live	in	an	old	farmhouse	in	Greenfield,	Massachusetts	with	my	
red-haired,	green-eyed	Irish-American	wife	and	our	son	Patrick.	
	

	 III	

For	 more	 information	 on	 my	 works	 and	 to	 contact	 me,	 see	 my	 website	 at	
https://copperhilltech.com.	
	
Contact	the	Author	
	
Despite	all	efforts	 in	preparing	this	book,	there	is	always	the	possibility	that	some	
aspects	or	 facts	will	not	 find	everybody’s	approval,	which	prompts	us,	author	and	
publisher,	to	ask	for	your	feedback.	If	you	would	like	to	propose	any	amendments	or	
corrections,	 please	 send	 us	 your	 comment.	 We	 look	 forward	 to	 any	 support	 in	
supplementing	this	book,	and	we	welcome	all	discussions	that	contribute	to	making	
the	topic	of	this	book	as	thorough	and	objective	as	possible.	
	
To	 submit	 amendments	 and	 corrections	 please	 log	 on	 to	 the	 author’s	 website	 at	
https://copperhilltech.com/contact-us/	and	leave	a	note.	
	
	
Code	And	Projects	Download	
	
Any	 additional	 information	 created	 after	 the	 publishing	 date	 of	 this	 book	 plus	
project	 &	 source	 code	 (Arduino	 and	Windows)	 are	 available	 as	 a	 free	 download	
through	 the	 author’s	 website	 at	 https://copperhilltech.com/controller-area-
network-can-prototyping-with-arduino/	
	

	
Table	of	Content	
	
	
1.	Introduction	to	Controller	Area	Network	..	1	
2.	Prototyping	Hardware	and	its	Variants	..	3	
2.1	Arduino	..	3	
2.2	Intel	Galileo	..	4	
2.3	LeafLabs	Maple	Microcontroller	Board	...	4	

3.	Arduino	CAN	Shields	...	5	
3.1	Microchip	MCP2515	CAN	Controller	..	5	
3.2	Arduino	CAN-Bus	Shield	by	SK	Pang	electronics	..	7	
3.3	CAN-BUS	Shield	by	Seeed	Studio	..	9	

4.	Arduino	CAN	Sketches	...	10	
4.1	The	MCP2515	Library	..	11	
4.1.1	Function	Calls	..	11	
4.1.2	Implementation	..	12	

4.2	CAN	Programming	...	13	
4.2.1	Simple	CAN	Shield	Test	...	13	
4.2.2	Extended	CAN	Shield	Test	...	15	
4.2.3	A	Simple	CAN	Network	Monitoring	and	Diagnostics	Program	17	

4.3	CAN	Network	Monitoring	under	Windows	...	25	
5	Conclusion	...	31	

Appendix	–	Recommended	Literature	..	33	

	 1	

	
1.	Introduction	to	Controller	Area	Network	

Controller	Area	Network	 (CAN)	 is	a	 serial	network	 technology	 that	was	originally	
designed	 for	 the	 automotive	 industry,	 especially	 for	 European	 cars,	 but	 has	 also	
become	a	popular	 bus	 in	 industrial	 automation	 as	well	 as	 other	 applications.	 The	
CAN	 bus	 is	 primarily	 used	 in	 embedded	 systems,	 and	 as	 its	 name	 implies,	 is	 a	
network	 technology	 that	provides	 fast	 communication	among	microcontrollers	up	
to	real-time	requirements,	eliminating	 the	need	 for	 the	much	more	expensive	and	
complex	technology	of	a	Dual-Ported	RAM.	
	
CAN	 is	a	 two-wire,	half	duplex,	high-speed	network	system,	 that	 is	 far	superior	 to	
conventional	 serial	 technologies	 such	 as	 RS232	 in	 regard	 to	 functionality	 and	
reliability	and	yet	CAN	implementations	are	more	cost	effective.		
	

	
	
While,	for	instance,	TCP/IP	is	designed	for	the	transport	of	large	data	amounts,	CAN	
is	designed	for	real-time	requirements	and	with	its	1	MBit/sec	baud	rate	can	easily	
beat	 a	 100	 MBit/sec	 TCP/IP	 connection	 when	 it	 comes	 to	 short	 reaction	 times,	
timely	error	detection,	quick	error	recovery	and	error	repair.	
	
CAN	 networks	 can	 be	 used	 as	 an	 embedded	 communication	 system	 for	
microcontrollers	as	well	as	an	open	communication	system	for	 intelligent	devices.	
Some	users,	for	example	in	the	field	of	medical	engineering,	opted	for	CAN	because	
they	have	to	meet	particularly	stringent	safety	requirements.	
	
Similar	 requirements	 had	 to	 be	 considered	 by	manufacturers	 of	 other	 equipment	
with	very	high	safety	or	reliability	requirements	(e.g.	robots,	lifts	and	transportation	
systems).	
	
The	greatest	 advantage	of	Controller	Area	Network	 lies	 in	 the	 reduced	amount	of	
wiring	 combined	with	 an	 ingenious	 prevention	 of	message	 collision	 (meaning	 no	
data	will	be	lost	during	message	transmission).	

	2	

	

	
	

Without	CAN		 															 With	CAN	
	
The	following	shows	a	need-to-know	overview	of	CAN’s	technical	characteristics.	
	
Controller	Area	Network	
	

• Is	a	serial	networking	technology	for	embedded	solutions.	

• Needs	only	two	wires	named	CAN_H	and	CAN_L.	

• Operates	at	data	rates	of	up	to	1	Megabit	per	second.	

• Supports	a	maximum	of	8	bytes	per	message	frame.	

• Does	not	 support	node	 IDs,	only	message	 IDs.	One	application	can	 support	

multiple	message	IDs.	

• Supports	 message	 priority,	 i.e.	 the	 lower	 the	 message	 ID	 the	 higher	 its	

priority.	

• Supports	two	message	ID	lengths,	11-bit	(standard)	and	29-bit	(extended).	

• Does	not	experience	message	collisions	(as	they	can	occur	under	other	serial	

technologies).	

• Is	 not	 demanding	 in	 terms	 of	 cable	 requirements.	 Twisted-pair	 wiring	 is	

sufficient.	

	
Note:	For	more	detailed	information	on	CAN,	please	refer	to	“A	Comprehensible	Guide	
to	Controller	Area	Network”	as	mentioned	in	the	literature	appendix	of	this	book.	

	 3	

	
2.	Prototyping	Hardware	and	its	Variants	

As	 I	 had	mentioned	 earlier	 in	 this	 book,	 it	 is	 assumed	 that	 you	 have	 some	 basic	
knowledge	 of	 the	 Arduino,	 Arduino	 Sketches,	 and	 Arduino	 Shields.	 I	 will	
nevertheless	take	the	opportunity	of	mentioning	the	prototyping	hardware	and	its	
variants.	
	
It	is	important	to	know	that	the	Arduino,	even	though	perfect	for	prototyping	due	to	
its	 low	 price	 and	 ease	 of	 programming,	 is	 not,	 in	 its	 bare	 form,	 an	 industrial-
strength	solution,	not	only	in	terms	of	environmental	specs	(e.g.	temperature	range,	
etc.)	but	also	in	terms	of	execution	speed	and	memory	resources.		
	
Specifically,	when	it	comes	to	CAN	applications	at	1	Mbit/sec	and	high	data	traffic,	
the	 Arduino	 may	 reach	 its	 limits	 quickly.	 There	 are,	 however,	 advanced	 and	 yet	
compatible	alternatives	to	the	Arduino	as	explained	in	the	following	chapters.	
	
2.1	Arduino	

In	 order	 to	 develop	 and	 test	 the	 sample	
programs	(sketches)	as	shown	in	this	book,	I	
used	 the	 Arduino	 Uno.	 The	 hardware	
consists	 of	 an	 open-source	 hardware	 board,	
usually	designed	around	an	8-bit	Atmel	AVR	
microcontroller	 with	 2	 KB	 RAM	 (working	
memory),	 32	 KB	 Flash	 Memory	 (sketches)	
and	1	KB	EEPROM	(non-volatile).	
	
These	technical	specifications	are	more	than	
sufficient	 for	 basic	 prototyping	 of	 CAN	

applications	 and	 the	 proof	 of	 concept.	 However,	 to	 re-iterate	 the	 point,	 with	
growing	demands	for	execution	speed	and	extended	functionality,	the	Arduino	may	
quickly	reach	its	limits.	
	
Note:	 All	 Arduino	 programs	 (sketches)	 as	 shown	 in	 this	 book	 were	 developed	 and	
tested	with	the	Arduino	Uno.	There	is	no	guarantee	that	these	programs	will	work	“as	
is”	on	any	other	compatible	system.	
	
	
	

	4	

2.2	Intel	Galileo	

The	Intel	Galileo	is	a	microcontroller	board	
based	 on	 the	 Intel®	 Quark	 SoC	 X1000	
Application	 Processor,	 a	 32-bit	 Intel	
Pentium-class	 system	 on	 a	 chip.	 It	 is	
designed	to	be	hardware	and	software	pin-
compatible	 with	 Arduino	 shields	 designed	
for	the	Uno	R3.		
	
The	 Galileo	 board	 is	 also	 software	
compatible	 with	 the	 Arduino	 software	
development	 environment,	 which	 should	

make	usability	and	introduction	a	snap.	
	
In	addition	to	Arduino	hardware	and	software	compatibility,	the	Galileo	board	has	
several	 PC	 industry	 standard	 I/O	 ports	 and	 features	 to	 expand	 native	 usage	 and	
capabilities	beyond	the	Arduino	shield	ecosystem.	A	full	sized	mini-PCI	Express	slot,	
100Mb	Ethernet	port,	Micro-SD	slot,	RS-232	serial	port,	USB	Host	port,	USB	Client	
port,	and	8MByte	NOR	flash	come	standard	on	the	board.	
	
The	 CPU	 is	 a	 400MHz	 32-bit	 Intel®	Pentium	 instruction	 set	 architecture	 (ISA)-
compatible	processor,	and	there	is	up	to	8	MByte	of	Flash	available.	(Source:	Galileo	
Datasheet	by	Intel)
	
For	 more	 information	 see:	 http://www.intel.com/content/www/us/en/do-it-
yourself/galileo-maker-quark-board.html.	
	
2.3	LeafLabs	Maple	Microcontroller	Board	

As	 similar	 as	 it	 may	 be	 to	 the	 Arduino,	 the	
differences	are	what	really	make	the	Maple	stand	
out.	 It	 harnesses	 the	 power	 of	 a	 32-bit	 ARM	
Cortex-M3	clocked	at	72	MHz	to	push	39	GPIOs,	16	
analog	 pins,	 12-bit	 ADC	 resolution	 and	 15	 PWM	
pins	 at	 16-bit	 resolution.	 In	 order	 to	 make	 sure	
you	have	plenty	of	programming	room	to	flex	that	
hardware,	the	Maple	also	provides	128k	Flash	and	
20KB	SRAM.	All	of	this	performance	is	delivered	in	
the	same	form	factor	as	the	Arduino	Pro.	
	

	 5	

If	your	current	Arduino-based	project	is	pushing	against	the	performance	limits	of	
the	ATmega,	porting	it	over	to	Maple	may	be	the	fastest	and	easiest	way	to	continue	
developing	your	project	without	starting	from	scratch.	
	
By	swapping	the	popular	"avr-gcc"	compiler	with	CodeSourcery's	"arm-none-eabi-
gcc,"	 LeafLabs	manages	 to	 provide	 a	 nearly	 identical	 programming	 experience	 to	
Arduino	 despite	 targeting	 a	 completely	 different	 architecture.	 Also,	 while	 some	
Arduino	 shields	 are	 incompatible	 due	 to	 certain	 capabilities	 being	 allocated	 to	
different	pins,	several	of	them	are	currently	supported	and	there	are	more	to	come.	
There	is	also	a	guide	available	on	the	product	page	for	porting	Arduino	libraries	and	
source	code	over	to	Maple.	(Source:	LeafLabs	open	electronics)	
	
For	more	information	see:	http://leaflabs.com/docs/hardware/maple.html	
	
3.	Arduino	CAN	Shields	

Since	 Controller	 Area	 Network	 (CAN)	 is	 predominantly	 targeted	 at	 industrial	
solutions	(versus	the	vastly	more	popular	USB	for	non-industrial	use	such	as	home	
and	lab),	there	aren’t	too	many	choices	available	in	the	market.	
	
Through	some	research	(i.e.	browsing)	I	found	two	very	similar	solutions,	and	they	
both	 work	 with	 the	 same	 CAN	 library	 (as	 explained	 in	 a	 later	 chapter).	 Both	
solutions	 use	 the	 Microchip	 MCP2515	 CAN	 controller.	 Also,	 both	 solutions	 are	
distributed	through	worldwide	online	resources.	
	
3.1	Microchip	MCP2515	CAN	Controller	

Microchip	Technology’s	MCP2515	is	a	stand-alone	Controller	Area	Network	(CAN)	
controller	 that	 implements	 the	 CAN	 specification,	 version	 2.0B.	 It	 is	 capable	 of	
transmitting	 and	 receiving	 both	 standard	 and	 extended	 data	 and	 remote	 frames.	
The	MCP2515	has	two	acceptance	masks	and	six	acceptance	filters	that	are	used	to	
filter	 out	 unwanted	 messages,	 thereby	 reducing	 the	 host	 MCUs	 overhead.	 The	
MCP2515	 interfaces	with	microcontrollers	 (MCUs)	via	an	 industry	standard	Serial	
Peripheral	Interface	(SPI).		
	
The	features	include	two	receive	buffers	with	prioritized	message	storage,	six	29-bit	
filters,	 two	29-bit	masks,	 and	 three	 transmit	buffers	with	prioritization	and	abort	
features.	(Source:	Microchip	Datasheet)	
	
Note:	 CAN	 specification	 2.0B	 refers	 to	 the	 capability	 of	 using	 standard	 CAN	 frames	
with	11-bit	message	identifier	plus	the	extended	format	with	a	29-bit	message	ID.	

	6	

	
To	download	the	full	MCP2515	datasheet	log	on	to:	
http://ww1.microchip.com/downloads/en/DeviceDoc/21801G.pdf	
	
Both	 CAN	 shields	 as	 described	 in	 the	 following	 chapters	 utilize	 the	 Microchip	
MCP2551	CAN	transceiver,	which	converts	the	internal	TTL	signals	to	a	differential	
voltage	as	demanded	by	the	CAN	standard.	
	
To	download	the	full	MCP2551	datasheet	log	on	to:	
http://ww1.microchip.com/downloads/en/DeviceDoc/21667f.pdf	
	

	 7	

	
3.2	Arduino	CAN-Bus	Shield	by	SK	Pang	electronics	

This	 shield	 by	 SK	 Pang	 electronics	
provides	the	Arduino	CAN-Bus	capability.	
As	 explained	 previously,	 it	 uses	 the	
Microchip	MCP2515	CAN	controller	with	
MCP2551	 CAN	 transceiver.	 The	 CAN	
connection	 is	 realized	 via	 a	 standard	 9-
way	 sub-D,	 however	 the	 pin	 assignment	
for	 CAN_H,	 CAN_L	 is	 not	 according	 to	
standard.	
	

	
Note:	In	all	truth,	there	is	no	mandatory	standard	for	pin	assignment,	but	the	industry	
uses	pins	2	(CAN_L)	and	7	(CAN_H)	as	a	virtual	standard.		
	
I	recommend	using	the	on-board	CAN_L	and	CAN_H	contacts	to	solder	the	CAN	cable	
directly	to	the	board.	
	
The	 shield	 also	 comes	 with	 a	 uSD	 card	 holder,	 a	 serial	 LCD	 connector,	 and	 a	
connector	 for	 an	EM406	GPS	module,	making	 this	 shield	 suitable	 for	 data	 logging	
application.	
	
Features	
	

• CAN	v2.0B	up	to	1	Mb/s	
• High	speed	SPI	Interface	(10	MHz)	
• Standard	and	extended	data	and	remote	frames	
• CAN	connection	via	standard	9-pin	sub-D	connector	
• As	an	option,	power	can	be	supplied	to	the	Arduino	by	sub-D	via	resettable	

fuse	and	reverse	polarity	protection.	
• Socket	for	EM406	GPS	module	
• Micro	SD	card	holder	
• Connector	for	serial	LCD	
• Reset	button	
• Joystick	control	menu	navigation	control	
• Two	LED	indicator	

	
	
	

	8	

Notes	
	

• No	cables	included	
• Header	pins	are	not	included;	they	must	be	ordered	separately	
• Pin	assignment	for	CAN_H,	CAN_L	not	according	to	standard	

	
All	technical	information	regarding	the	use	of	the	CAN	controller,	uSD	card	holder,	
joystick,	LEDs,	etc.	can	be	found	on	the	company’s	wiki	website	at:	
https://code.google.com/p/skpang/	
	
Ordering	Information	
	
To	order	the	SK	Pang	ele3ctronics	CAN	shield,	you	can	use	the	following	resources	
(or	browse	for	“Arduino	CAN-BUS	Shield”	for	further	options):	
	
Sparkfun	-	https://www.sparkfun.com/products/10039	
	
SK	 Pang	 electronics	 -	 http://skpang.co.uk/catalog/arduino-canbus-shield-with-
usd-card-holder-p-706.html	

	 9	

3.3	CAN-BUS	Shield	by	Seeed	Studio	

In	 terms	 of	 CAN	 capabilities,	 the	
shield	 by	 Seeek	 Studio	 provides	 the	
same	 functionality	 as	 the	 one	 by	 SK	
Pang	 electronics,	 however,	 it	 comes	
with	a	much	lower	price	tag,	because	
it	 does	 not	 have	 any	 additional	
components	 besides	 the	 CAN	
interface.	
	
Overall,	 the	 device	 makes	 a	 solid	
impression,	especially	since	the	CAN	
connection	 is	 according	 to	 standard	
and	 in	 addition	 provides	 CAN	
connectivity	 through	 easily	

accessible	terminals.	
	
Features	
	

• Implements	CAN	V2.0B	at	up	to	1	Mb/s	
• SPI	Interface	up	to	10	MHz	
• Standard	(11	bit)	and	extended	(29	bit)	data	and	remote	frames	
• Two	receive	buffers	with	prioritized	message	storage	
• Industrial	standard	9	pin	sub-D	connector	
• Two	LED	indicators	

	
Notes	
	

• No	cables	included	
	
All	 technical	 information	regarding	 the	use	of	 the	CAN	controller	can	be	 found	on	
the	company’s	wiki	website	at:	
http://www.seeedstudio.com/wiki/CAN-BUS_Shield	
	
Ordering	Information	
	
To	 order	 the	 Seeed	 Studio	 CAN	 shield,	 you	 can	 use	 the	 following	 resources	 (or	
browse	for	“Arduino	CAN-BUS	Shield”	for	further	options):	
	
Seeed	Studio	-	http://www.seeedstudio.com/depot/CANBUS-shield-p-2256.html	

	

	10	

	
Important	to	know:	The	Seeed	Studio	CAN	bus	shield	has	been	undergoing	some	
hardware	 changes	 to	become	 compatible	with	 systems	 such	 as	 the	Arduino	Mega	
2560.	The	version	1.0	will	work	with	the	Arduino	Uno,	while	all	higher	versions	also	
work	with	 the	Mega	 2560.	 This	will	 also	 affect	 the	 code	 of	 the	 Arduino	 projects,	
specifically	the	line	“MCP_CAN	CAN0(10);”	in	the	main	module	selecting	the	CS	pin.	
That	line	must	change	to	“MCP_CAN	CAN0(9);”	for	all	CAN	bus	shield	versions	above	
1.0.		I	have	added	a	comment	in	the	corresponding	section	of	the	code.	
	
4.	Arduino	CAN	Sketches	

The	 implementation	 of	 either	 one	 of	 the	 introduced	 CAN-BUS	 Shields	 and	 the	
corresponding	CAN	sketches	went	surprisingly	smooth	when	paired	with	the	right	
library	software.		
	
I	found	several	source	codes	for	accessing	the	MCP2515	CAN	controller,	but	most	of	
them	didn’t	even	pass	the	initial	quality	control	phase	(I	read	the	code	first	before	I	
use	 it).	 One	 of	 the	 quality	 criteria	 was	 the	 support	 for	 29-bit	 CAN	 message	
identifiers	 (CAN	 2.0B	 Compatibility),	 which	 is	 mandatory	 when	 it	 comes	 to	
implementing,	for	instance,	the	SAE	J1939	vehicle	network	protocol.	Some	software	
samples	I	found	were	just	literally	“samples”	and	they	left	ample	room	for	guessing	
games.	
	
I	was	most	pleased	by	the	MCP2515	Library	by	Cory	Fowler,	which	can	be	found	at	
https://github.com/coryjfowler/MCP2515_lib	
	
This	library	is	compatible	with	any	shield	or	CAN	interface	that	uses	the	MCP2515	
CAN	protocol	controller.	
	
	

	

	 11	

	
In	order	to	test	and	verify	the	proper	transmission	and	reception	of	CAN	messages,	I	
used	the	ADFweb	CAN-to-USB	gateway	with	its	Windows	interface.	
	
Note:	 In	order	to	test	a	CAN	application,	you	need	at	least	two	CAN	nodes	to	establish	
a	network	communication.	The	second	node	can	be	another	Arduino	with	CAN	shield	
or	(if	the	budget	allows)	another	CAN	device	with	CAN	data	monitoring	capabilities.	
	
4.1	The	MCP2515	Library	

As	with	any	serial	networking	controller,	the	essential	functions	are:	
	

1.	Initialization	
	
2.	Read	Data	
	
3.	Write	Data	
	
4.	Check	Status	

	
In	case	of	the	MCP2515	library,	these	functions	are	represented	by:	
	

1.	Initialization:	CAN0.begin	
	
2.	Read	Data:	CAN0.readMsgBuf		
				incl.	CAN0.checkReceive,	CAN0.getCanId	
	
3.	Write	Data:	CAN0.sendMsgBuf	
	
4.	Check	Status:	CAN0.checkError	

	
4.1.1	Function	Calls	

Function:	 	 CAN0.begin	
Purpose:	 	 Initializes	the	CAN	controller	and	sets	the	speed	(baud	rate)	
Parameter:	 	 CAN_5KPS	…	CAN_1000KPS	(See	mcp_can_dfs.h)	
Return	Code:	 	 CAN_OK	=	Initialization	okay	
	 	 	 CAN_FAILINIT	=	Initialization	failed	
	
Function:	 	 CAN0.checkReceive	
Purpose:	 	 Check	if	message	was	received	
Parameter:	 	 None	

	12	

Return	Code:	 	 CAN_MSGAVAIL	=	Message	available	
	 	 	 CAN_NOMSG	=	No	message	
	
Function:	 	 CAN0.readMsgBuf	
Purpose:	 	 Read	the	message	buffer	
Parameter:	 	 nMsgLen	returns	the	message	length	(number	of	data	bytes)	
	 	 	 nMsgBuffer	returns	the	actual	message	
Return	Code:	 	 None	
	
Function:	 	 CAN0.getCANId	
Purpose:	 	 Retrieves	the	ID	of	the	received	message	
Parameter:	 	 None	
Return	Code:	 	 m_nID	=	Message	ID	
	
Function:	 	 CAN0.	sendMsgBuf	
Purpose:	 	 Send	a	message	buffer	
Parameter:	 	 id	=	Message	ID	
	 	 	 ext	=	CAN_STDID	(11-bit	ID)	or	CAN_EXTID	(29-bit	ID)	
	 	 	 len	=	Number	of	data	bytes	(0…8)	
	 	 	 buf	=	Message	buffer	
Return	Code:	 	 None	
	
Function:	 	 CAN0.checkError	
Purpose:	 	 Checks	CAN	controller	for	errors	
Parameter:	 	 None	
Return	Code:	 	 CAN_OK	=	Status	okay	
	 	 	 CAN_CTRLERROR	=	Error	
	
There	are	further	functions,	among	others,	for	message	filtering	and	settings	masks,	
and	they	are	worth	being	checked	out	for	more	sophisticated	functions,	but	they	are	
not	necessary	for	simple	CAN	communication	tasks.	
	
4.1.2	Implementation	

The	 implementation	of	 the	MPC2515	 library	 is	 fairly	easy:	Open	Arduino,	create	a	
new	file,	then	use	the	menu	items	Sketch->Add	File…	to	include	the	following	files	to	
the	project:	
	

• mcp_can.cpp	
• mcp_can.h	
• mcp_can_dfs.h	

	

	 13	

In	the	Arduino	project	file	add	the	following	on	top:	
	
#include	"mcp_can.h"	
#include	<SPI.h>	
MCP_CAN	CAN0(10);	
	
Let	me	repeat	here:	The	Seeed	Studio	CAN	bus	shield	has	been	undergoing	some	
hardware	 changes	 to	become	 compatible	with	 systems	 such	 as	 the	Arduino	Mega	
2560.	The	version	1.0	will	work	with	the	Arduino	Uno,	while	all	higher	versions	also	
work	with	 the	Mega	 2560.	 This	will	 also	 affect	 the	 code	 of	 the	 Arduino	 projects,	
specifically	the	line	“MCP_CAN	CAN0(10);”	in	the	main	module	selecting	the	CS	pin.	
That	line	must	change	to	“MCP_CAN	CAN0(9);”	for	all	CAN	bus	shield	versions	above	
1.0.		
	
You	are	now	ready	to	go.	The	following	chapters	will	describe	how	to	implement	the	
function	calls.	
	
4.2	CAN	Programming	

The	most	exciting	part	about	this	project	is	when	it	comes	to	the	point	where	two	
CAN	 nodes	 communicate	 with	 each	 other.	 I	 started	 off	 with	 writing	 a	 simple	
program	that	sent	messages	that	were	received	by	my	USB-to-CAN	gateway	and	its	
Windows	 monitoring	 software.	 From	 there	 on,	 I	 extended	 the	 program	 to	 also	
receive	CAN	messages	and	display	them	on	the	Arduino	serial	monitor.		
	
In	 a	 later	 chapter,	 I	 will	 also	 show	 a	 Windows	 programming	 example	 that	
establishes	a	communication	with	the	Arduino.	
	
4.2.1	Simple	CAN	Shield	Test	

The	 following	 represents	 a	 very	 simple	 CAN	 test	 program	 that	 periodically	 (i.e.	
every	1	second)	sends	out	a	CAN	message	with	a	29-bit	identifier	at	a	baud	rate	of	
250	kbit/sec.		
	
// Simple CAN Shield Test
#include "mcp_can.h"
#include <SPI.h>
MCP_CAN CAN0(10); // Set CS to pin 10

unsigned char stmp[8] = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37};

// SYSTEM: Setup routine runs on power-up or reset
void setup() {

 // Set the serial interface baud rate

	14	

 Serial.begin(9600);

 // Initialize the CAN controller
 // Baud rates are defined in mcp_can_dfs.h
 if (CAN0.begin(CAN_250KBPS) == CAN_OK)
 Serial.print("CAN Init OK.\n\r\n\r");
 else
 Serial.print("CAN Init Failed.\n\r");

}// end setup

// Main Loop - Arduino Entry Point
void loop()
{
 // Send data: id = 0x1FF, extended frame, data len = 8, stmp: data buf
 // ID mode (11/29 bit) defined in mcp_can_dfs.h
 CAN0.sendMsgBuf(0x1FF, CAN_EXTID, 8, stmp);

 // Run in 1 sec interval
 delay(1000);

}// end loop

	
While	 the	 code	 is	 short	 and	 sufficiently	 self-explanatory,	 let	me	 explain	 the	 steps	
taken	in	the	program.	
	
In	 the	setup()	 routine,	 the	program	initializes	 the	serial	 interface	(USB)	 to	a	baud	
rate	of	9600	bps	 (Please	make	sure	 that	your	Arduino	serial	monitor	 is	 set	 to	 the	
same	rate).	
	
It	 then	 initializes	 the	 CAN	 controller	 to	 a	 data	 transmission	 rate	 of	 250	 kbits/sec	
and	displays	possible	error	messages	on	the	Arduino	serial	monitor.	
	
In	the	main	loop()	routine,	the	program	sends	an	8-byte	CAN	message	using	an	ID	
of	 0x1FF	 in	 extended	messaging	 format	 (29-bit	message	 ID).	 The	 actual	message	
(unsigned	char	stmp[8]	in	this	example)	contains	a	string	from	ASCII	0	to	7,	which	
can	be	easily	spotted	when	using	a	data	monitoring	software.	
	
Using	 my	 test	 conditions,	 the	 message	 was	 received	 through	 the	 USB-to-CAN	
gateway	and	displayed	under	Windows:	
	

	 15	

	
	
While	 this	 program	 may	 not	 be	 very	 useful	 without	 a	 CAN	 monitoring	 software	
(meaning	 you	 can’t	 see	 the	 result),	 in	 the	 least	 it	 demonstrates	 how	 simple	 CAN	
programming	can	be.	
	
4.2.2	Extended	CAN	Shield	Test	

In	this	next,	extended	example,	we	use	the	same	program	as	shown	in	the	previous	
chapter	but	add	a	CAN	receiving	routine	to	it.	The	result,	i.e.	the	received	messages,	
will	be	displayed	through	the	Arduino	serial	monitor.	
	
// Simple CAN Shield Test
#include <stdlib.h>
#include "mcp_can.h"
#include <SPI.h>
MCP_CAN CAN0(10); // Set CS to pin 10

// Test message
unsigned char stmp[8] = {0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37};

// SYSTEM: Setup routine runs on power-up or reset
void setup() {

 // Set the serial interface baud rate
 Serial.begin(9600);

 // Initialize the CAN controller
 // Baud rates defined in mcp_can_dfs.h
 if (CAN0.begin(CAN_250KBPS) == CAN_OK)
 Serial.print("CAN Init OK.\n\r\n\r");
 else

	16	

 Serial.print("CAN Init Failed.\n\r");

}// end setup

// Main Loop - Arduino Entry Point
void loop()
{
 // Declarations
 byte nMsgLen = 0;
 byte nMsgBuffer[8];
 char sString[4];

 // Send out a test message
 // Send data: id = 0x1FF, extended frame, data len = 8, stmp: data buf
 // ID mode (11/29 bit) defined in mcp_can_dfs.h
 CAN0.sendMsgBuf(0x1FF, CAN_EXTID, 8, stmp);

 // Check for a message
 if(CAN0.checkReceive() == CAN_MSGAVAIL)
 {
 // Read the message buffer
 CAN0.readMsgBuf(&nMsgLen, &nMsgBuffer[0]);
 INT32U nMsgID = CAN0.getCanId();

 // Print message ID to serial monitor
 Serial.print("Message ID: 0x");
 if(nMsgID < 16) Serial.print("0");
 Serial.print(itoa(nMsgID, sString, 16));
 Serial.print("\n\r");

 // Print data to serial monitor
 Serial.print("Data: ");
 for(int nIndex = 0; nIndex < nMsgLen; nIndex++)
 {
 Serial.print("0x");
 if(nMsgBuffer[nIndex] < 16) Serial.print("0");
 Serial.print(itoa(nMsgBuffer[nIndex], sString, 16));
 Serial.print(" ");
 }// end for
 Serial.print("\n\r\n\r");

 }// end if

 // Run in 1 sec interval
 delay(1000);

}// end loop

	
Obviously,	 the	program	has	grown	compared	to	 the	previous	one,	but	most	of	 the	
added	code	is	used	for	the	data	display	on	the	Arduino	serial	monitor.	
	
First,	note	on	top	the	line	#include	<stdlib.h>.	The	stdlib.h	file	allows	us	to	convert	
integer	data	into	ASCII,	which	is	necessary	for	the	data	display.	
	
The	setup()	routine	remains	the	same	as	it	was	in	the	previous	example.	

	 17	

	
In	the	loop()	routine,	we	first	declare	some	variables	for	the	message	reception	and	
code	 conversion.	 We	 still	 send	 out	 the	 same	 message	 as	 before	 by	 calling	 the	
CAN0.sendMsgBuf()	function.	
	
Next,	we	check	for	the	reception	of	a	CAN	message,	and	if	that	is	the	case,	we	read	
the	message	 into	 the	 assigned	 buffer	 and	 retrieve	 the	message	 ID.	 The	 following	
code	is	all	about	converting	the	received	data	into	a	human-readable	format	(ASCII)	
and	display	it	on	the	Arduino	serial	monitor.	
	
Last,	but	not	least,	we	halt	the	system	for	one	second	(1000	milliseconds).	Naturally,	
under	real-life	conditions,	this	delay	is	not	reasonable,	since	there	can	occur	literally	
thousands	 of	messages	 per	 one	 second.	However,	 this	 code	 is	meant	merely	 as	 a	
demo	sample	that	proves	that	the	actual	CAN	communication	can	be	accomplished	
with	very	little	code.	
	
If	you	load	this	program	onto	two	separate	Arduinos	with	CAN	shield,	you	have	not	
only	accomplished	a	full	CAN	network,	you	can	also	see	the	CAN	messages	as	they	
are	exchanged	between	the	two	nodes.	
	
Note:	 It	may	sound	obvious,	but	please	make	sure,	in	case	you	use	more	than	one	CAN	
node,	that	all	nodes	are	initialized	with	the	same	baud	rate.	Using	different	baud	rates	
is	the	most	common	cause	when	data	communication	fails.	
	
4.2.3	A	Simple	CAN	Network	Monitoring	and	Diagnostics	Program	

The	Arduino	board	in	combination	with	the	CAN	shield	provides	the	hardware	for	a	
full-fledged	CAN	network	monitoring	tool,	and	this	next	Arduino	program	is	a	first	
step	in	that	direction.	
	
However,	 before	 we	 get	 into	 more	 detail,	 let	 me	 issue	 some	 warnings	 regarding	
possible	restrictions	of	the	system:	
	

• The	 MCP2515	 has	 only	 two	 receive	 buffers,	 which	 limits	 the	 system’s	
capabilities	to	respond	in	a	timely	fashion	while	receiving	and	processing	the	
data	traffic.	For	high-speed,	high-busload	applications,	it	is	recommended	to	
use	the	message	filter	functions	to	reduce	the	processing	load	on	the	CPU.	

	
• Besides	 the	 limited	 processing	 speed	 of	 the	 8-bit	 CPU,	 the	 Arduino	 comes	

with	only	32	kByte	program	memory,	which	is	sufficient	for	a	great	number	
of	 small	 applications.	 However,	 when	 it	 comes	 to	 more	 demanding	 tasks	
such	 as	 a	 CAN	 monitoring	 tool,	 the	 memory	 resources	 may	 be	 exhausted	

	18	

quicker	 than	expected.	 For	 instance,	 the	 following	application	already	uses	
roughly	20	percent	 of	 the	 total	memory	 space,	 and	 it	 provides	 only	 a	 very	
rudimentary	version	of	a	monitoring	tool.	

	
In	 all	 consequence,	 if	 you	 are	 serious	 about	 creating	 a	 more-or-less	 professional	
application,	you	might	want	to	consider	alternative	hardware	solutions	as	discussed	
in	a	previous	chapter.	
	
In	order	to	create	a	CAN	monitoring	system,	we	need	to:	
	

1. Receive	CAN	messages	and	display	them	
2. Be	able	to	enter	CAN	messages	and	transmit	them	

	
With	 the	 previous	 two	 programming	 samples	 in	 mind,	 we	 have	 already	
accomplished	step	#1,	but	the	next	step	(entering	CAN	messages)	needs	a	bit	more	
work.	
	
The	idea	is	to	enter	the	CAN	message	into	Arduino’s	serial	monitor	and	transmit	the	
result	by	clicking	the	Send	button.	In	order	to	accomplish	that,	we	need	to	follow	a	
data	entry	format	as	shown	in	the	following.	
	
Command:	 Send	CAN	Message	(11	bit)	
Description:	 Node	receives	a	message	and	transmits	it	into	the	CAN	bus	
Format:	 #SM	id	n	dd	dd….	
	
	 	 id	=	Message	ID	(2	bytes,	hex)	
	 	 n		=	Number	of	bytes	(1	byte,	0	to	8)	
	 	 d		=	data	bytes	(hex,	up	to	eight	bytes)	
	
	 	 Example:	
	 	 #SM	01FF	8	30	31	32	33	34	35	36	37	
	
In	this	previous	example,	we	design	a	CAN	message	with	an	ID	of	01FF	and	a	data	
length	 of	 8	 bytes.	 These	 8	 bytes	 are	 represented	 by	 the	 number	 30	 (hex)	 to	 37,	
which	is	the	equivalent	of	ASCII-0	to	ASCII-7.	
	

	

	 19	

	
While	 the	basic	 functionality	of	 sending	 and	 receiving	CAN	messages	 remains	 the	
same,	 the	 program	 size	 and	 complexity	 has,	 naturally,	 grown.	 Most	 of	 the	 code,	
however,	 is	 being	 used	 for	 conversion	 between	 hex	 and	 ASCII	 formats	 (for	
readability)	and	some	rudimentary	syntax	check.	
	
Note:	 The	 data	 entry	 in	 this	 following	 programming	 sample	 is	 not	 fool-proof,	
meaning,	while	the	program	does	some	syntax	checks,	it	is	still	possible	that	incorrect	
data	entries	will	still	be	interpreted	as	valid	CAN	message	formats.	
	
Also,	 this	 example	 still	 uses	 9600	baud	 for	 the	 communication	with	Arduino’s	 serial	
monitor.	 A	 faster	 transmission	 speed	 is	 recommended	 for	 CAN	 networks	 with	 high	
data	traffic.	
	
// Simple CAN Shield Test
#include <stdlib.h>
#include "mcp_can.h"
#include <SPI.h>
MCP_CAN CAN0(10); // Set CS to pin 10

// Constants
#define MAX_CMD_LENGTH 60

#define CR "\n\r"
#define CRCR "\n\r\n\r"

// SYSTEM: Setup routine runs on power-up or reset
void setup() {

 // Set the serial interface baud rate
 Serial.begin(9600);

 // Initialize the CAN controller
 // Baud rates defined in mcp_can_dfs.h
 if (CAN0.begin(CAN_250KBPS) == CAN_OK)
 Serial.print("CAN Init OK.\n\r\n\r");
 else
 Serial.print("CAN Init Failed.\n\r");

}// end setup

// Main Loop - Arduino Entry Point
void loop()
{
 // Check for a received CAN message and print it to the Serial Monitor
 SubCheckCANMessage();

 // Check for a command from the Serial Monitor and send message as entered
 SubSerialMonitorCommand();

}// end loop

// --

	20	

// Check for CAN message and print it to the Serial Monitor
// --
void SubCheckCANMessage(void)
{
 // Declarations
 byte nMsgLen = 0;
 byte nMsgBuffer[8];
 char sString[4];

 if(CAN0.checkReceive() == CAN_MSGAVAIL)
 {
 // Read the message buffer
 CAN0.readMsgBuf(&nMsgLen, &nMsgBuffer[0]);
 INT32U nMsgID = CAN0.getCanId();

 // Print message ID to serial monitor
 Serial.print("Message ID: 0x");
 if(nMsgID < 16) Serial.print("0");
 Serial.print(itoa(nMsgID, sString, 16));
 Serial.print("\n\r");

 // Print data to serial monitor
 Serial.print("Data: ");
 for(int nIndex = 0; nIndex < nMsgLen; nIndex++)
 {
 Serial.print("0x");
 if(nMsgBuffer[nIndex] < 16) Serial.print("0");
 Serial.print(itoa(nMsgBuffer[nIndex], sString, 16));
 Serial.print(" ");
 }// end for
 Serial.print(CRCR);

 }// end if

}// end subCheckCANMessage

// --
// Check for command from Serial Monitor
// --
void SubSerialMonitorCommand()
{
 // Declarations
 char sString[MAX_CMD_LENGTH+1];
 bool bError = true;

 unsigned long nMsgID = 0xFFFF;
 byte nMsgLen = 0;
 byte nMsgBuffer[8];

 // Check for command from Serial Monitor
 int nLen = nFctReadSerialMonitorString(sString);

 if(nLen > 0)
 {
 // A string was received from serial monitor
 if(strncmp(sString, "#SM ", 4) == 0)
 {
 // The first 4 characters are acceptable

	 21	

 // We need at least 10 characters to read the ID and data number
 if(strlen(sString) >= 10)
 {
 // Determine message ID and number of data bytes
 nMsgID = lFctCStringLong(&sString[4], 4);
 nMsgLen = (byte)nFctCStringInt(&sString[9], 1);

 if(nMsgLen >=0 && nMsgLen <=8)
 {
 // Check if there are enough data entries
 int nStrLen = 10 + nMsgLen * 3; // Expected msg length
 if(strlen(sString) >= nStrLen) // Larger length is acceptable
 {
 int nPointer;
 for(int nIndex = 0; nIndex < nMsgLen; nIndex++)
 {
 nPointer = nIndex * 3; // Blank character plus two numbers
 nMsgBuffer[nIndex] =

(byte)nFctCStringInt(&sString[nPointer + 11], 2);
 }// end for

 // Reset the error flag
 bError = false;

 // Everything okay; send the message
 CAN0.sendMsgBuf(nMsgID, CAN_STDID, nMsgLen, nMsgBuffer);

 // Repeat the entry on the serial monitor
 Serial.print(sString);
 Serial.print(CRCR);

 }// end if

 }// end if

 }// end if

 }// end if

 // Check for entry error
 if(bError == true)
 {
 Serial.print("???: ");
 Serial.print(sString);
 Serial.print(CR);
 }

 }// end if

}// end SubSerialMonitorCommand

// --
// Read message from Serial Monitor
// --
// Returns string length
//
byte nFctReadSerialMonitorString(char* sString)
{

	22	

 // Declarations
 byte nCount;

 nCount = 0;

 if(Serial.available() > 0)
 {
 Serial.setTimeout(100);
 nCount = Serial.readBytes(sString, MAX_CMD_LENGTH);
 }// end if

 // Terminate the string
 sString[nCount] = 0;

 return nCount;

}// end nFctReadSerialMonitorString

// --
// Convert string into int
// --
// Note: nLen MUST be between 1 and 4
//
// Returns integer value (-1 indicates an error in the string)
//
int nFctCStringInt(char *sString, int nLen)
{
 // Declarations
 int nNum;
 int nRetCode = 0;

 // Check the string length
 if(strlen(sString) < nLen)
 nRetCode = -1;
 else
 {
 // String length okay; convert number
 int nShift = 0;
 for(int nIndex = nLen - 1; nIndex >=0; nIndex--)
 {
 if(sString[nIndex] >= '0' && sString[nIndex] <= '9')
 nNum = int(sString[nIndex] - '0');
 else if(sString[nIndex] >= 'A' && sString[nIndex] <= 'F')
 nNum = int(sString[nIndex] - 'A') + 10;
 else goto nFctCStringInt_Ret;

 nNum = nNum << (nShift++ * 4);
 nRetCode = nRetCode + nNum;

 }// end for

 }// end else

 // Return the result
nFctCStringInt_Ret:

 return nRetCode;

	 23	

}// end nFctCStringInt

// --
// Convert string into unsigned long
// --
// Note: nLen MUST be between 1 and 4
//
// Returns integer value (-1 indicates an error in the string)
//
unsigned long lFctCStringLong(char *sString, int nLen)
{
 // Declarations
 unsigned long nNum;
 unsigned long nRetCode = 0;

 // Check the string length
 if(strlen(sString) < nLen)
 nRetCode = -1;
 else
 {
 // String length okay; convert number
 unsigned long nShift = 0;
 for(int nIndex = nLen - 1; nIndex >=0; nIndex--)
 {
 if(sString[nIndex] >= '0' && sString[nIndex] <= '9')
 nNum = int(sString[nIndex] - '0');
 else if(sString[nIndex] >= 'A' && sString[nIndex] <= 'F')
 nNum = int(sString[nIndex] - 'A') + 10;
 else goto lFctCStringLong_Ret;

 nNum = nNum << (nShift++ * 4);
 nRetCode = nRetCode + nNum;

 }// end for

 }// end else

 // Return the result
lFctCStringLong_Ret:

 return nRetCode;

}// end lFctCStringLong

	
Note:	This	programming	example,	unlike	the	first	two	samples	in	this	book,	 is	based	
on	 the	 use	 of	 an	 11-bit	 message	 identifier,	 paying	 tribute	 to	 the	 majority	 of	 CAN	
applications.	
	
Without	going	into	the	last	detail,	here	is	a	brief	description	of	the	code:	
	
The	setup()	function	remains	the	same	as	in	the	first	two	programming	examples	in	
this	 book,	 i.e.	 it	 handles	 the	 initialization	 of	 the	 serial	 connection	 and	 the	 CAN	
controller.	
	

	24	

The	loop()	routine,	however,	looks	extremely	simple,	but	that	only	means	that	the	
major	part	of	the	functionality	has	been	distributed	to	a	number	of	new	functions.	
	
Inside	loop()	are	only	two	function	calls:	
	

1. SubCheckCANMessage()	checks	for	a	received	CAN	message	and	displays	it	
on	the	Arduino	serial	monitor.	

	
2. SubSerialMonitorCommand()	 receives	 a	 string	 from	 Arduino’s	 serial	

monitor,	 achieves	 some	 rudimentary	 syntax	 check,	 and	 sends	 out	 the	 CAN	
message.	

	
The	remaining	function	calls	are:	
	

• nFctReadSerialMonitorString()	 reads	the	data	 format	string	as	entered	by	
the	user	and	returns	the	string	length.	

	
• nFctCStringInt()	converts	a	string	into	integer	and	returns	the	integer	data.	

	
• lFctCStringLong()	converts	a	string	into	long	and	returns	the	long	data.	

	
Note:	Unlike	C#,	the	C	and	C++	programming	languages	provide	only	limited	support	
for	data	 conversion,	 and	 sometimes	writing	 your	own	 conversion	 functions	 fits	 your	
application	needs	better	than	the	provided	library	functions.	
	
The	 following	 shows	 screen	 shots	 taken	 trough	 a	 session	with	 this	 programming	
example:	
	

	

	 25	

	
First,	we	received	two	CAN	messages	(IDs	0x80	and	0x100),	then	we	sent	two	CAN	
messages	(IDs	01FF	and	00EF).	
	
For	this	operation,	I	used	my	standard	test	configuration	(i.e.	USB-to-CAN	gateway	
with	Windows	monitoring	 tool	 as	 the	 second	 CAN	 node),	 but	 from	 here	 on,	 it	 is	
possible	to	use	two	Arduinos	with	CAN	shield	running	the	same	application.	
	
In	 order	 to	 extend	 the	 functionality	 of	 this	 programming	 example,	 the	 following	
commands	would	 be	 helpful	 to	 provide	 a	 full-fledged	monitoring	 and	 diagnostics	
tool:	
	

• CAN	Start/Stop	–	Starts	or	stops	displaying	messages	on	the	Arduino	serial	
monitor.	

• CAN	Baud	Rate	–	Modify	the	CAN	baud	rate.	
• Request	CAN	Settings	–	Reports	the	current	settings	such	as	baud	rate	and	

message	ID	mode.	
• Send	CAN	Message	in	29-bit	format.	
• Add	CAN	Message	Filter	
• Delete	CAN	Message	Filter	
• Delete	All	CAN	Message	Filters	

	
And	yes,	there	are	multiple	possibilities	of	extending	this	program	toward	a	really	
professional	version.	However,	what	the	Arduino	cannot	provide	is	a	professionally	
looking	graphical	user	interface,	and	this	is	where	the	existing	USB	connection	to	a	
PC	opens	the	door	to	more	possibilities.	
	
4.3	CAN	Network	Monitoring	under	Windows	

While	programming	the	Arduino	can	be	exciting	(especially	since	everything	works	
so	smoothly),	the	real	fun	comes	when	you	can	extend	the	Arduino’s	reach	to	a	PC	
running	Windows.	
	
Note:	My	apologies	to	all	Mac	and	LINUX	users	for	bringing	a	Windows	programming	
example,	but	there	is	no	better	programming	than	using	C#	under	Microsoft’s	Visual	
Studio.	 I	 have	 enjoyed	 programming	 under	 OS-X	 and	 LINUX,	 but	 when	 it	 comes	 to	
producing	 quick	 and	 effective	 programming	 examples,	 I	 prefer	 to	 stay	 with	 Visual	
Studio.	 However,	 the	 experienced	 programmer	 should	 be	 able	 to	 replicate	 the	
functionality	of	the	serial	monitor.	
	

	26	

To	 learn	more	 about	 serial	 port	 programming	 (RS-232	 and	 USB)	 under	 LINUX	 see	
http://www.teuniz.net/RS-232/.	 I	 consider	 this	 by	 far	 the	 most	 professional	
application	 for	 serial	 ports	 under	 LINUX.	 It	 also	 suits	 Windows	 applications	 but	 is	
primarily	 meant	 for	 compilers	 inferior	 to	 Visual	 Studio	 and/or	 for	 programming	
embedded	systems.	
	
In	 the	 following	we	assume	that	you	have	 the	Arduino	USB	driver	 installed	under	
your	 Windows	 machine.	 The	 driver	 is	 automatically	 installed	 with	 the	 Arduino	
development	environment.	
	
As	 I	have	mentioned	 in	my	note,	 I	 am	using	Microsoft’s	Visual	 Studio	2012,	 and	 I	
have	 designed	 the	 following	 GUI	 that	 may	 look	 very	 familiar	 to	 the	 Arduino	
developer.	 Basically,	 this	 very	 simple	 program	 is	 a	 replica	 of	 the	 Arduino	 serial	
monitor.	
	

	
	
The	 screen	 elements	 are	 a	 textbox	 for	 data	 entry,	 a	 command	button	 to	 send	 the	
entry	to	the	Arduino,	and	another	 larger	text	box	to	display	the	data	coming	from	
the	 Arduino.	 Last,	 but	 not	 least,	 there	 is	 a	 combobox	 displaying	 all	 available	 USB	
COM	 ports	 (It	 is	 your	 task	 to	 determine	 the	 proper	 USB	 port;	 there	 is	 no	 auto	
detection).	

	 27	

	
What	the	program	does	not	provide	is	the	baud	rate	settings,	which	has	been	hard-
coded	as	9600	baud	into	the	program	but	can	be	modified	easily.	Of	course,	this	is	
not	the	professional	way	of	doing	it,	but,	after	all,	this	programming	sample	serves	
as	an	example	on	reading/sending	messages	from/to	the	Arduino.	In	regards	to	the	
envisioned	extended	CAN	network	monitoring	and	diagnostics	 tool,	 you	will	need	
more	 and	different	 screen	 elements,	 and	 the	 baud	 rate	 settings	 should	 be	 part	 of	
that	project.	
	
All	screen	elements	in	this	project	stick	with	their	default	settings,	however	with	a	
few	exceptions	as	shown	in	the	following:	
	
Element	 Name	 	 Modified	Property	 	 Events	
Form	 	 Form1		 Text	=	“Serial	Monitor”	 -	
Text	 	 txtSend	 -	 	 	 	 -	
Text	 	 txtReceived	 Multiline	=	True	
	 	 	 	 Scrollbars	=	Vertical	
Button		 btnSend	 Text=”Send”	 	 	 Click	
ComboBox	 cboCOMPort	 -	 	 	 	 SelectedIndexChanged	
	
The	following	shows	the	C#	program	listing	(the	entire	program	is	within	the	form):	
	
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO;
using System.IO.Ports;
using System.Threading;

namespace USBAccess
{
 public partial class Form1 : Form
 {
 // Constants
 public const int REC_BUFFER_SIZE = 500;
 public const int READ_TIMEOUT = 500;
 public const int WRITE_TIMEOUT = 500;
 public const int REC_BUFFER_FILLTIME = 80;

 public static SerialPort _serialport;

 public Form1()
 {
 InitializeComponent();

	28	

 string[] sPorts = new string[20];
 sPorts = SerialPort.GetPortNames();

 for (int nIndex = 0; nIndex < sPorts.Length; nIndex++)
 cboCOMPort.Items.Add(sPorts[nIndex]);

 }// end Form1

 // SetTextDeleg
 // -------------
 private delegate void SetTextDeleg(string text);

 // sp_DataReceived
 // ----------------
 void sp_DataReceived(object sender, SerialDataReceivedEventArgs e)
 {
 // Set the receive buffer size
 char[] sRecData = new char[REC_BUFFER_SIZE + 1];

 // Give the hardware some time to receive the whole message
 Thread.Sleep(REC_BUFFER_FILLTIME);

 try
 {
 int nBytes = _serialport.BytesToRead;

 // Read the string
 int nIndex;

 for (nIndex = 0; nIndex < nBytes; nIndex++)
 {
 int nRec = _serialport.ReadByte();
 sRecData[nIndex] = (char)nRec;

 }// end for

 sRecData[nIndex] = (char)0; // Terminate the string
 string sStr = new string(sRecData);

 // In case of RS232, this line causes a timeout,

 // meaning no data is being received
 this.BeginInvoke(new SetTextDeleg(si_DataReceived),

new object[] { sStr });
 }
 catch (TimeoutException) { }

 }// end _serialport_DataReceived

 // si_DataReceived
 // ----------------
 private void si_DataReceived(string data)
 {
 if(txtReceived.TextLength == 0)
 txtReceived.Text = data;
 else
 txtReceived.Text += "\n\r" + data;

	 29	

 // Set cursor to end of screen
 txtReceived.SelectionStart = txtReceived.TextLength;

 txtReceived.ScrollToCaret();
 txtReceived.Refresh();

 }// end si_DataReceived

 // btnSend_Click
 // --------------
 private void btnSend_Click(object sender, EventArgs e)
 {
 // Make sure the serial port is open before trying to write
 try
 {
 if (!(_serialport.IsOpen))
 _serialport.Open();

 if (txtSend.Text.Length > 0)
 _serialport.Write(txtSend.Text);
 else

 MessageBox.Show("Please enter a message to be sent.",
"Attention!");

 }
 catch (Exception ex)
 {
 MessageBox.Show("Error opening/writing to serial port." +
 ex.Message, "Error!");
 }

 }// end btnSend_Click

 // Event : cboCOMPort_SelectedIndexChanged
 //--
 private void cboCOMPort_SelectedIndexChanged(object sender,

EventArgs e)
 {
 // Define the serial port for the USB device
 _serialport = new SerialPort(cboCOMPort.SelectedItem.ToString(),
 9600, Parity.None, 8, StopBits.One);
 _serialport.Handshake = Handshake.None;

 // Set the read/write timeouts
 _serialport.ReadTimeout = READ_TIMEOUT;
 _serialport.WriteTimeout = WRITE_TIMEOUT;
 _serialport.ReadBufferSize = REC_BUFFER_SIZE;
 _serialport.Open();

 _serialport.DataReceived +=

new SerialDataReceivedEventHandler(sp_DataReceived);

 }// end cboCOMPort_SelectedIndexChanged

 }// end class

}// end namespace

	

	30	

Reference:	The	handling	of	the	USB	port	is	based	on	an	article	by	Ryan	Alford	(with	
added	content	by	Arjun	Walmiki,	Gregory	Krzywoszyja	and	Mahesh	Chand)	at:	
http://www.c-sharpcorner.com/uploadfile/eclipsed4utoo/communicating-with-
serial-port-in-C-Sharp/	
	
At	program	start,	the	user	first	needs	to	select	the	applicable	USB	COM	port,	which	
initializes	the	port	(SelectedIndexChanged	event).	
	
Beyond	that,	the	program	functions	as	a	simple	USB	terminal:	Messages	are	typed	in	
the	top	text	box	and	sent	by	clicking	on	the	Send	command	button.	The	larger	text	
box	displays	the	received	data.	
	
The	 following	 shows	 screen	 shots	 taken	 through	a	 session	with	our	Arduino	CAN	
Network	Monitoring	and	Diagnostics	program:	
	

	
	
In	this	case,	we	sent	two	CAN	Messages	with	the	same	ID	(0100)	but	different	data.	
Next,	we	received	to	messages	through	my	standard	test	configuration	(i.e.	USB-to-
CAN	gateway	with	Windows	monitoring	tool	as	the	second	CAN	node).	
	

	 31	

	
	

	
	
The	previous	two	screen	shots	serve	as	evidence	that	the	messages	sent	to/from	the	
serial	monitor	via	the	Arduino	CAN	Shield	were	received/transmitted	as	expected.	
	
5	Conclusion	

At	this	point,	after	having	accomplished	all	the	necessary	steps,	it	is	easily	possible	
to	 develop	 a	 professional,	 full-fledged	 CAN	Network	Monitoring,	 Diagnostics,	 and	
Simulation	Software.	
	
The	 groundwork	 has	 been	 laid	 for	 all	 necessary	 hardware	 and	 software	
components:	
	

1. A	USB-to-CAN	Gateway	to	provide	CAN	connectivity	to	the	host	system	
2. A	communication	protocol	between	the	USB-to-CAN	and	the	host	system	
3. A	graphical	user	interface	(GUI)	for	the	presentation	of	the	CAN	network	

	
For	more	 technical	 information	and	articles	and	 to	 contact	me,	 see	my	website	at	
http://copperhilltech.com.	
	

	 33	

	
Appendix	–	Recommended	Literature	

There	 is	 more	 than	 plenty	 and	 valuable	 literature	 available	 on	 the	 Arduino,	 but,	
being	an	experienced	programmer,	the	one	and	only	work	I	read	was:	
	
Programming	Arduino	
Getting	Started	with	Sketches	
By	Simon	Monk	
ISBN	978-0-07-178422-1	
	
Also	recommended	for	providing	more	background	information:	
	
A	Comprehensible	Guide	to	Controller	Area	Network	
By	Wilfried	Voss	
ISBN	978-0976511601	
	
A	Comprehensible	Guide	to	J1939	
By	Wilfried	Voss	
ISBN	978-0976511632	
	
All	 works	 are	 available	 through	 Amazon.com	 and	 all	 their	 international	 online	
stores,	Barnes	&	Noble,	Abebooks.com	and	all	their	international	online	stores,	and	
any	other	good	bookstore.	

	34	

	

