Site Information

 Loading... Please wait...

Blog

CAN Bus Programming With Arduino Uno, Mega 2560

About Controller Area Network (CAN) Controller Area Network (CAN) is a serial network technology that was originally designed for the automotive industry, especially for European cars, but has also become a popular bus in industrial automation as well as other applications. The CAN bus is primarily used in embedded systems, and as its name implies, is a network technology that provides [...]

Read More »


Controller Area Network (CAN) Prototyping With Teensy 3.1/3.2

The Teensy is a breadboard-friendly development board that comes with loads of features in a very small package. Each Teensy 3.1 or 3.2 comes pre-flashed with a boot-loader so it can be programmed using the on-board USB connection, i.e. there is no external programmer required. You can program for the Teensy in your favorite program editor using C or you can [...]

Read More »


mbed LPC1768 Baseboards With CAN Bus (Controller Area Network) Port

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.I will take a risk by repeating myself over and over again by saying that the mbed LPC1768, as well as the Arduino Due, is utterly useless in its bare form. In order to accomplish any [...]

Read More »


Arduino Due CAN Bus (Controller Area Network) Interfaces

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.As it turns out, the Arduino Due, just like a myriad of other embedded systems with CAN interfaces, was developed under the best intentions, but these intentions were focussed on providing a low-price ARM processor solution [...]

Read More »


Arduino Due - Microcontroller Board Based on the Atmel SAM3X8E ARM Cortex-M3 CPU

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor. According to the official Arduino website: The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU. It is the first Arduino board based on a 32-bit ARM core microcontroller. It has 54 digital input/output pins [...]

Read More »


Recommended Literature Describing The ARM Cortex M3 Microcontroller

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.  The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings. The cores are intended for microcontroller use, and consist of the Cortex-M0, M0+, M1, M3, M4, and M7. The  ARM Cortex-M3 processor is very [...]

Read More »


A Brief Introduction to the ARM Cortex M3 Processor

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.  The ARM Cortex-M is a group of 32-bit RISC ARM processor cores licensed by ARM Holdings. The cores are intended for microcontroller use, and consist of the Cortex-M0, M0+, M1, M3, M4, and M7. The  ARM Cortex-M3 processor is very [...]

Read More »


Introduction to CAN Bus and SAE J1939 Prototyping

This post is part of a series on CAN Bus and SAE J1939 Prototyping with the ARM Cortex M3 processor.  The prototyping of Controller Area Network (CAN) interfaces used to be a tedious task, but the recent years have seen the emergence of low-cost, yet easy-to-use embedded development platforms such as the Arduino, BeagleBone, Raspberry Pi, and others. This [...]

Read More »


App Note: Arduino Due With 2-Channel CAN Bus Prototyping Board

According to the official Arduino website: The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU (datasheet). It is the first Arduino board based on a 32-bit ARM core microcontroller. It has 54 digital input/output pins (of which 12 can be used as PWM outputs), 12 analog inputs, 4 UARTs (hardware serial ports), a [...]

Read More »


App Note: Arduino Due With CAN Bus Breakout Board

The Arduino Due is a microcontroller board based on the Atmel SAM3X8E ARM Cortex-M3 CPU. It is the first Arduino board based on a 32-bit ARM core microcontroller. It has 54 digital input/output pins (of which 12 can be used as PWM outputs), 12 analog inputs, 4 UARTs (hardware serial ports), a 84 MHz clock, [...]

Read More »